The use of secondary raw materials in metallurgical processes such as steelmaking is an important contribution to the circular economy aspired to by EU members and many other countries. The agglomeration of dusts, fines and sludges is an important pretreatment step to enable the use of these materials in subsequent melting processes, such as steelmaking in electric arc furnaces (EAFs). It also reduces the amount of by-products and waste materials that are currently waste for disposal and are landfilled. The presented research is part of the Fines2EAF project, which aims to increase the value of steelmaking residues by internal recycling and use or reuse in the form of agglomerates. The approach followed in this project is the use of a hydraulic stamp press and alternative binder systems to produce cement-free agglomerates. The first results of lab-scale agglomeration tests of six different recipes with varying pressing forces are presented in this paper. It is shown that the addition of fibres from paper recycling has a strong effect on the cold compression stability of the agglomerates, by far exceeding other effects such as increased pressing force. Overall, the agglomerates produced in the lab show promising characteristics, for example, cold compression stability and abrasion resistance, which should allow for use in EAF steelmaking.
In addition to the blast furnace converter route, electric steel production in the electric arc furnace (EAF) is one of the two main production routes for crude steel. In 2019, the global share of crude steel produced via the electric steel route was 28%, which in numbers is 517 million metric tons of crude steel. The production and processing of steel leads to the output of a variety of by-products, such as dusts, fines, sludges and scales. At the moment, 10–67% of these by-products are landfilled and not recycled. These by-products contain metal oxides and minerals including iron oxide, zinc oxide, magnesia or alumina. Apart from the wasted valuable materials, the restriction of landfill space and stricter environmental laws are additional motivations to avoid landfill. The aim of the Fines2EAF project, funded by the European Research Fund for Coal and Steel, is to develop a low-cost and flexible solution for the recycling of fines, dusts, slags and scales from electric steel production. During this project, an easy, on-site solution for the agglomeration of fine by-products from steel production has to be developed from lab scale to pilot production for industrial tests in steel plants. The solution is based on the stamp press as the central element of the agglomeration process. The stamp press provides the benefit of being easily adapted to different raw materials and different pressing parameters, such as pressing-force and -speed, or mold geometry. Further benefits are that the stamp press process requires less binding material than the pelletizing process, and that no drying process is required as is the case with the pelletizing process. Before advancing the agglomeration of by-products via stamp press to an industrial scale, different material recipes are produced in lab-scale experiments and the finished agglomerates are tested for their use as secondary raw materials in the EAF. Therefore, the tests focus on the chemical and thermal behavior of the agglomerates. Chemical behavior, volatilization and reduction behavior of the agglomerates were investigated by differential thermogravimetric analysis combined with mass spectroscopy (TGA-MS). In addition, two melts with different agglomerates are carried out in a technical-scale electric arc furnace to increase the sample size.
Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.