Q1We report on thermodiffusion experiments conducted on the International Space Station ISS during fall 2016. These experiments are part of the DCMIX (Diffusion and thermodiffusion Coefficients Measurements in ternary Mixtures) project, which aims at establishing a reliable data base of non-isothermal transport coefficients for selected ternary liquid mixtures. The third campaign, DCMIX3, focuses on aqueous systems with water/ethanol/triethylene glycol as an example, where sign changes of the Soret coefficient have already been reported for certain binary subsystems. Investigations have been carried out with the SODI (Selectable Optical Diagnostics Instrument) instrument, a Mach-Zehnder interferometer set up inside the Microgravity Science Glovebox in the Destiny Module of the ISS. Concentration changes within the liquids have been monitored in response to an external temperature gradient using phase-stepping interferometry. The complete data set has been made available in spring 2017. Due to additionally available measurement time, it was possible to collect a complete data set at 30 • C and an almost complete data set at 25 • C, which significantly exceeds the originally envisaged measurements at a single temperature only. All samples could be measured successfully. The SODI instrument and the DCMIX experiments have proven reliable and robust, allowing to extract meaningful data even in case of unforeseen laser instabilities. First assessments of the data quality have revealed six out of 31 runs with some problems in image contrast and/or phase step stability that will require more sophisticated algorithms. This publication documents all relevant parameters of the conducted experiments and also events that might have an influence on the final results. The compiled information is intended to serve as a starting point for all following data evaluations. Q2
This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed.
Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP. Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof. 1. Is the title of your article accurate and spelled correctly? 2. Please check affiliations including spelling, completeness, and correct linking to authors. 3. Did you remember to include acknowledgment of funding, if required, and is it accurate? Location in article Query/Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation. Q1 Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author's given and surnames have been correctly identified (given names are highlighted in red and surnames appear in blue). Q2 Q10 Please confirm the change in volume number in Ref. 2. Q11 References 3 and 18 contain identical information. Please check and provide the correct reference or delete the duplicate reference. If the duplicate is deleted, renumber the reference list as needed and update all citations in the text. Q12 We were unable to locate a digital object identifier (doi) for Ref. 17. Please verify and correct author names and journal details (journal title, volume number, page number, and year) as needed and provide the doi. If a doi is not available, no other information is needed from you. For additional information on doi's, please select this link: http//www.doi.org/.
We report here the thermal conductivity measurement of carbon nanotubes water-based nanofluids stabilized by sodium dodecylbenzene sulfonate as a function of volume fraction and temperature. For the first time, we further show the existence of a sharp peak in thermal conductivity at very small volume fraction below theoretical percolation threshold which is temperature independent. This preliminary study evidences the potential of promising and useful nanofluid for practical applications in cooling and energy systems and heat exchangers, as viscosity penalty is obviously vanished at this concentration.
This paper provides the molecular diffusion and Soret coefficients of the ternary system 1,2,3,4-tetrahydronaphtalene, isobutylbenzene, n -dodecane system at mass fractions 0.8-0.1-0.1 and temperature 25 (°)C for implementation into the benchmark presented in this topical issue. The Soret coefficients are determined by digital interferometry using the data of DSC-DCMIX microgravity experiment. The method used takes into account the influence of the thermal field on the Soret separations and the selection of the image processing techniques results in reproducible Soret coefficients.The diffusion coefficients are obtained by the Open Ended Capillary technique The fitting of the data collected through a set of two complementary experimental runs allows retrieving the four Fickian diffusion coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.