One way for solar cell efficiencies to overcome the Shockley-Queisser limit is downconversion of high-energy photons using singlet fission (SF) in polyacenes like tetracene (Tc). SF enables generation of multiple excitons from the high-energy photons, which can be harvested in combination with Si. In this work, we investigate the use of lead sulfide quantum dots (PbS QDs) with a band gap close to Si as an interlayer that allows Förster resonant energy transfer (FRET) from Tc to Si, a process that would be spin-forbidden without the intermediate QD step. We investigate how the conventional FRET model, most commonly applied to the description of molecular interactions, can be modified to describe the geometry of QDs between Tc and Si and how the distance between QD and Si, and the QD bandgap affects the FRET efficiency. By extending the acceptor dipole in the FRET model to a 2-D plane, and to the bulk, we see a relaxation of the distance dependence of transfer. Our results indicate that FRET efficiencies from PbS QDs to Si well above 50% are possible at very short but possibly realistic distances of around 1 nm, even for QDs with relatively low photoluminescence quantum yield.
Singlet fission is one of the most promising routes to overcome the single-junction efficiency limit for solar cells. Singlet fission-enhanced silicon solar cells are the most desirable implementation, but transfer of triplet excitons, the product of singlet fission, into silicon solar cells has proved to be very challenging. Here, we report on an all optical measurement technique for the detection of triplet exciton quenching at semiconductor interfaces, a necessary requirement for triplet exciton or charge transfer. The method relies on the growth of individual, single-crystal islands of the singlet fission material on the silicon surface. The islands have different heights, and we correlate these heights to the quenching efficiency of triplet excitons. The quenching efficiency is measured by spatially resolved delayed fluorescence and compared to a diffusion–quenching model. Using silicon capped with a blocking thermal oxide and aromatic monolayers, we demonstrate that this technique can quickly screen different silicon surface treatments for triplet exciton quenching.
We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p−n junctions. The nanostructures yield strong light−matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron transport layer. The nanoholes are infiltrated with PbS quantum dots (QDs) to form a nanopatterned depleted heterojunction. Optical simulations show that the absorption per unit volume in the cylindrical QD absorber layer is enhanced by 19.5% compared to a planar reference. This is achieved for a square array of QD nanopillars of 330 nm height and 320 nm diameter, with a pitch of 500 nm on top of a residual QD layer of 70 nm, surrounded by ZnO. Electronic simulations show that the patterning results in a current gain of 3.2 mA/cm 2 and a slight gain in voltage, yielding an efficiency gain of 0.4%. Our simulations further show that the fill factor is highly sensitive to the patterned structure. This is explained by the electric field strength varying strongly across the patterned absorber. We outline a path toward further optimized optically resonant nanopattern geometries with enhanced carrier collection properties. We demonstrate a 0.74 mA/cm 2 current gain for a patterned cell compared to a planar cell in experiments, owing to a much improved infrared response, as predicted by our simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.