A ''No Mix'' sanitation system was installed in a dormitory at the University of CanTho in South Vietnam, with the objective of recycling nutrients from source separated wastewater streams. This paper presents the ''Yellow Water'' treatment plant and its efficiency in recovering phosphorus and nitrogen from human urine. The pilot plant achieved phosphorus removal efficiencies of 98% with both diluted and undiluted urine. Phosphorus was recovered in the form of struvite, a solid mineral fertilizer with heavy metal concentrations being below the German Fertilizer Regulation's threshold limits. About 110 g of struvite could be generated after one treatment cycle, during which 50 L of urine were processed. Nitrogen removal by air stripping showed best results when circulating the urine for 3 h through the stripping column at a high flow rate (80 L/h). With these settings, more than 90% of the nitrogen could be removed from the urine, and virtually 100% of this nitrogen could be recovered in the form of liquid ammonium sulfate. In the future, treatment costs could be further reduced by making use of the solar energy that is available during daytime in South Vietnam.
An anaerobic submerged membrane bioreactor (AnSMBR) on pilot-scale treating a mixture composed of municipal wastewater and glucose under mesophilic temperature conditions was operated for 206 days. The performance of the AnSMBR was evaluated at different fluxes, biomass concentrations and gas sparging velocities (GSV). GSV was used to control fouling. In addition, the AnSMBR was operated in cycles that included relaxation and backwashing phases. The increase in the transmembrane pressure (fouling rate) was measured under different operational conditions and was used to evaluate the stability of the process. The fouling rate could be controlled for a long period of time at a flux of 7 l m(-2) h(-1) with a GSV of 62 m/h and an average biomass concentration of 14.8 g TSS/L. The membrane was physically cleaned after 156 days of operation. The cleaning efficiency was almost 100% indicating that no irreversible fouling was developed inside the pores of the membrane. The COD removal efficiency was close to 90%. As in anaerobic processes, nutrients were not exposed to degradation and almost no pathogens were found in the effluent, hence the effluent could be used for irrigation in agriculture.
Decentralized wastewater treatment is the key to sustainable water management because it facilitates effluent (and nutrient) reuse for irrigation or as service water in households. Membrane bioreactors (MBR) can produce effluents of bathing water quality. Septic tanks can be retrofitted to MBR units. Package MBR plants for wastewater or grey water treatment are also available. Systems for decentralized treatment and reuse of domestic wastewater or grey water are also feasible for hotels, condominiums and apartment or office complexes. This paper presents the effluent qualities of different decentralized MBR applications. The high effluent quality allows infiltration even in sensitive areas or reuse for irrigation, toilet flushing and cleaning proposes in households. Due to the reusability of treated water and the possibility to design the systems for carbon reduction only, these systems can ideally and easily serve to close water and nutrient loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.