Large seismogenic faults consist of approximately meter-thick fault cores surrounded by hundreds of meter-thick damage zones. Earthquakes are generated by rupture propagation and slip within fault cores and dissipate the stored elastic strain energy in fracture and frictional processes in the fault zone and in radiated seismic waves. Understanding this energy partitioning is fundamental in earthquake mechanics to explain fault dynamic weakening and causative rupture processes operating over different spatial and temporal scales. The energy dissipated in the earthquake rupture propagation along a fault is called fracture energy or breakdown work. Here we review fracture energy estimates from seismological, modeling, geological, and experimental studies and show that fracture energy scales with fault slip. We conclude that although material-dependent constant fracture energies are important at the microscale for fracturing grains of the fault zone, they are negligible with respect to the macroscale processes governing rupture propagation on natural faults. ▪ Earthquake ruptures propagate on geological faults and dissipate energy in fracture and frictional processes from micro- (less than a millimeter) to macroscale (centimeters to kilometers). ▪ The energy dissipated in earthquake rupture propagation is called fracture energy ( G) or breakdown work ( Wb) and scales with coseismic slip. ▪ For earthquake ruptures in natural faults, the estimates of G and Wb are consistent with a macroscale description of causative processes. ▪ The energy budget of an earthquake remains controversial, and contributions from different disciplines are required to unravel this issue. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The understanding of earthquake physics is hindered by the poor knowledge of fault strength and temperature evolution during seismic slip. Experiments reproducing seismic velocity (∼1 m/s) allow us to measure both the evolution of fault strength and the associated temperature increase due to frictional heating. However, temperature measurements were performed with techniques having insufficient spatial and temporal resolution. Here we conduct high velocity friction experiments on Carrara marble rock samples sheared at 20 MPa normal stress, velocity of 0.3 and 6 m/s, and 20 m of total displacement. We measured the temperature evolution of the fault surface at the acquisition rate of 1 kHz and over a spatial resolution of ∼40 µm with an optical fiber conveying the infrared radiation to a two‐color pyrometer. Temperatures up to 1,250°C and low coseismic fault shear strength are compatible with the activation of grain size dependent viscous creep.
Earthquakes are certainly one of the most important manifestations of faulting and the understanding of dynamic fault weakening during the initiation and the propagation of a seismic rupture is a major task for geoscientists. In particular, understanding how shear stress varies with slip is still a key challenge to tackle in order to interpret the mechanisms governing dynamic fault weakening during earthquakes (Rice, 2006). Earthquake ruptures propagate at speeds of ∼km/s reaching slip-rates of ∼1 m/s within the fault zone at depth in the Earth's crust (Heaton, 1990;Rice & Cocco, 2007). Under these quite extreme deformation conditions, fault rocks experience
Typical rocks at shallow depths of seismogenic faults are fluid-rich gouges. During earthquakes, on-fault frictional heating may trigger thermal pressurization and dynamic fault weakening. We show that frictional melting, rather than thermal pressurization, occurred at shallow depths during the 2008 MW 7.9 Wenchuan earthquake, China. One year after the Wenchuan earthquake, we found an ~2-mm-thick, glass-bearing pseudotachylyte (solidified frictional melt) in the fault gouges retrieved at 732.6 m depth from the first borehole of the Wenchuan Earthquake Fault Scientific Drilling Project. The matrix of pseudotachylyte is enriched in barium and cut by barite-bearing veins, which provide evidence of co- and post-seismic fluid percolation. Because pseudotachylyte can be rapidly altered in the presence of percolating fluids, its preservation suggests that gouge melting occurred in a recent large earthquake, possibly the Wenchuan earthquake. Rock friction experiments on fluid-rich fault gouges deformed at conditions expected for seismic slip at borehole depths showed the generation of pseudotachylytes. This result, along with the presence of a second slip zone attributed to the Wenchuan earthquake at 589.2 m depth, implies that during large earthquakes, frictional melting can occur at shallow depths and that seismic slip can be accommodated by multiple faults. This conclusion is consistent with the evidence from surface faulting that multiple ruptures propagated during the Wenchuan earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.