This paper reports an investigation of the physical origin of the thermal droop (the drop of the optical power at high temperatures) in InGaN-based light-emitting diodes. We critically investigate the role of various mechanisms including Shockley-Read-Hall recombination, thermionic escape from the quantum well, phonon-assisted tunneling, and thermionic trap-assisted tunneling; in addition, to explain the thermal droop, we propose a closed-form model which is able to accurately fit the experimental data by using values extracted from measurements and simulations and a limited set of fitting parameters. The model is based on a two-step phonon-assisted tunneling over an intermediate defective state, corrected in order to take into account the pure thermionic component at zero bias and the field-assisted term. V
The potential applications of germanium and its alloys in infrared silicon-based photonics have led to a renewed interest in their optical properties. In this letter, we report on the numerical determination of Auger coefficients at T = 300 K for relaxed and biaxially strained germanium. We use a Green's function based model that takes into account all relevant direct and phonon-assisted processes and perform calculations up to a strain level corresponding to the transition from indirect to direct energy gap. We have considered excess carrier concentrations ranging from 1016 cm−3 to 5 × 1019 cm−3. For use in device level simulations, we also provide fitting formulas for the calculated electron and hole Auger coefficients as functions of carrier density.
The Ge1-xSnx alloy is a promising material for optoelectronic applications. It offers a tunable wavelength in the infrared (IR) spectrum and high compatibility with complementary metal-oxide-semiconductor (CMOS) technology. However, difficulties in growing device quality Ge1-xSnx films has left the potentiality of this material unexplored. Recent advances in technological processes have renewed the interest toward this material paving the way to potential applications. In this work, we perform a numerical investigation on absorption coefficient, radiative recombination rate, and Auger recombination properties of intrinsic and doped Ge1-xSnx for application in the extended-short wavelength infrared and medium wavelength infrared spectrum ranges. We apply a Green's function based model to the Ge1-xSnx full electronic band structure determined through an empirical pseudopotential method and determine the dominant recombination mechanism between radiative and Auger processes over a wide range of injection levels.
We discuss some of the key issues to be addressed along the way to complement, and possibly to replace, the standard semiclassical Boltzmann picture with genuine quantum approaches for the simulation of carrier transport and recombination in GaN-based LEDs, with the goal of gradually removing the fitting parameters presently required by semiempirical «quantum corrections» and to better understand the processes responsible for the efficiency droop. As examples of augmented semiclassical models, we present a three-step description of trap-Assisted tunneling, especially relevant below the optical turn-on, and a carrier-density-dependent estimate of the phonon-Assisted capture rate from bulk states to quantum wells (QWs). Moving to genuine quantum models, we solve the semiconductor Bloch equations to calculate the gain/absorption spectra of AlGaN/GaN QWs, and we discuss our first simulations of spatially and energetically resolved currents across the active region of a single-QW LED based on the nonequilibrium Green's function approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.