Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several papers explored very simple and natural approaches based on Monte Carlo sampling of Markov Chains (MC), and reported encouraging results. We show, perhaps surprisingly, that this approach is outperformed by a carefully engineered version of color coding (CC) [1], a sophisticated algorithmic technique that we extend to the case of graphlet sampling and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions of nodes show CC to be more accurate than MC. Furthermore, we formally show that the mixing time of the MC approach is too high in general, even when the input graph has high conductance. All this comes at a price however. While MC is very efficient in terms of space, CC's memory requirements become demanding when the size of the input graph and that of the graphlets grow. And yet, our experiments show that a careful implementation of CC can push the limits of the state of the art, both in terms of the size of the input graph and of that of the graphlets.
Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several papers explored very simple and natural algorithms based on Monte Carlo sampling of Markov Chains (MC), and reported encouraging results. We show, perhaps surprisingly, that such algorithms are outperformed by color coding (CC) [2], a sophisticated algorithmic technique that we extend to the case of graphlet sampling and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions of nodes show CC to be more accurate than MC; furthermore, we formally show that the mixing time of the MC approach is too high in general, even when the input graph has high conductance. All this comes at a price however. While MC is very efficient in terms of space, CC's memory requirements become demanding when the size of the input graph and that of the graphlets grow. And yet, our experiments show that CC can push the limits of the state-of-the-art, both in terms of the size of the input graph and of that of the graphlets. CCS Concepts: • Mathematics of computing → Graph enumeration; Graph algorithms; • Theory of computation → Random walks and Markov chains; • Information systems → Data mining; Web mining;
The resiliency of a network is its ability to remain effectively functioning also when any of its nodes or links fails. However, to reduce operational and set-up costs, a network should be small in size, and this conflicts with the requirement of being resilient. In this paper we address this trade-off for the prominent case of the broadcasting routing scheme, and we build efficient (i.e., sparse and fast) faulttolerant approximate shortest-path trees, for both the edge and vertex single-failure case. In particular, for an n-vertex non-negatively weighted graph, and for any constant ε > 0, we design two structures of size O( n log n ε 2 ) which guarantee (1 + ε)-stretched paths from the selected source also in the presence of an edge/vertex failure. This favorably compares with the currently best known solutions, which are for the edge-failure case of size O(n) and stretch factor 3, and for the vertexfailure case of size O(n log n) and stretch factor 3. Moreover, we also focus on the unweighted case, and we prove that an ordinary spanner can be slightly augmented in order to build efficient fault-tolerant approximate breadth-first-search trees.
Abstract. Let G be an unweighted n-node undirected graph. A β-additive spanner of G is a spanning subgraph H of G such that distances in H are stretched at most by an additive term β w.r.t. the corresponding distances in G. A natural research goal related with spanners is that of designing sparse spanners with low stretch. In this paper, we focus on fault-tolerant additive spanners, namely additive spanners which are able to preserve their additive stretch even when one edge fails. We are able to improve all known such spanners, in terms of either sparsity or stretch. In particular, we consider the sparsest known spanners with stretch 6, 28, and 38, and reduce the stretch to 4, 10, and 14, respectively (while keeping the same sparsity). Our results are based on two different constructions. On one hand, we show how to augment (by adding a small number of edges) a faulttolerant additive sourcewise spanner (that approximately preserves distances only from a given set of source nodes) into one such spanner that preserves all pairwise distances. On the other hand, we show how to augment some known fault-tolerant additive spanners, based on clustering techniques. This way we decrease the additive stretch without any asymptotic increase in their size. We also obtain improved fault-tolerant additive spanners for the case of one vertex failure, and for the case of f edge failures.
In this paper we introduce a mathematical model that captures some of the salient features of recommender systems that are based on popularity and that try to exploit social ties among the users. We show that, under very general conditions, the market always converges to a steady state, for which we are able to give an explicit form. Thanks to this we can tell rather precisely how much a market is altered by a recommendation system, and determine the power of users to influence others. Our theoretical results are complemented by experiments with real world social networks showing that social graphs prevent large market distortions in spite of the presence of highly influential users. †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.