Streptococcus agalactiae (Group B Streptococcus, GBS) causes neonatal disease and stillbirth, but its burden in sub-Saharan Africa is uncertain. We assessed maternal recto-vaginal GBS colonisation (7967 women), stillbirth and neonatal disease. Whole genome sequencing was used to determine serotypes, sequence types (ST), and phylogeny. We found low maternal GBS colonisation prevalence (934/7967, 12%), but comparatively high incidence of GBS-associated stillbirth and early onset neonatal disease (EOD) in hospital (0.91(0.25-2.3)/1000 births; 0.76(0.25-1.77)/1000 live-births respectively). However, using a population denominator, EOD incidence was considerably reduced (0.13(0.07-0.21)/1000 live-births). Treated cases of EOD had very high case fatality (17/36, 47%), especially within 24 hours of birth, making under-ascertainment of community-born cases highly likely, both here and in similar facility-based studies. Maternal GBS colonisation was less common in women with low socio-economic status, HIV infection and undernutrition, but when GBS-colonised, they were more likely colonised by the most virulent clone, CC17. CC17 accounted for 267/915(29%) of maternal colonising (265/267(99%) serotype III, 2/267(0.7%) serotype IV), and 51/73(70%) of neonatal disease cases (all serotype III). Trivalent (Ia/II/III) and pentavalent (Ia/Ib/II/III/V) vaccines would cover 71/73(97%) and 72/73(99%) of disease-causing serotypes respectively. Serotype IV should be considered for inclusion, with evidence of capsular switching in CC17 strains.
Background: Zika virus (ZIKV) was first discovered in East Africa in 1947. ZIKV has caused microcephaly in the Americas, but it is not known whether ZIKV is a cause of microcephaly in East Africa. Methods: We used surveillance data from 11,061 live births at Kilifi County Hospital in coastal Kenya between January 2012 and October 2016 to identify microcephaly cases and conducted a nested case-control study to determine risk factors for microcephaly. Gestational age at birth was estimated based on antenatal ultrasound scanning (‘Scanned cohort’) or last menstrual period (‘LMP cohort’, including births ≥37 weeks’ gestation only). Controls were newborns with head circumference Z scores between >-2 and ≤2 SD that were compared to microcephaly cases in relation to ZIKV exposure and other maternal and newborn factors. Results: Of the 11,061 newborns, 214 (1.9%, 95%CI 1.69, 2.21) had microcephaly. Microcephaly prevalence was 1.0% (95%CI 0.64, 1.70, n=1529) and 2.1% (95%CI 1.81, 2.38, n=9532) in the scanned and LMP cohorts, respectively. After excluding babies <2500 g (n=1199) in the LMP cohort the prevalence was 1.1% (95%CI 0.93, 1.39). Microcephaly showed an association with being born small for gestational age (p<0.001) but not with ZIKV neutralising antibodies (p=0.6) or anti-ZIKV NS1 IgM response (p=0.9). No samples had a ZIKV neutralising antibody titre that was at least fourfold higher than the corresponding dengue virus (DENV) titre. No ZIKV or other flavivirus RNA was detected in cord blood from cases or controls. Conclusions: Microcephaly was prevalent in coastal Kenya, but does not appear to be related to ZIKV exposure; the ZIKV response observed in our study population was largely due to cross-reactive responses to DENV or other related flaviviruses. Further research into potential causes and the clinical consequences of microcephaly in this population is urgently needed.
Background Understanding spatial variations in health outcomes is a fundamental component in the design of effective, efficient public health strategies. Here we analyse the spatial heterogeneity of low birthweight (LBW) hospital deliveries from a demographic surveillance site on the Kenyan coast. Methods A secondary data analysis on singleton livebirths that occurred between 2011 and 2021 within the rural areas of the Kilifi Health and demographic surveillance system (KHDSS) was undertaken. Individual-level data was aggregated at enumeration zone (EZ) and sub-location level to estimate the incidence of LBW adjusted for accessibility index using the Gravity model. Finally, spatial variations in LBW were assessed using Martin Kulldorf’s spatial scan statistic under Discrete Poisson distribution. Results Access adjusted LBW incidence was estimated as 87 per 1,000 person years in the under 1 population (95% CI: 80, 97) at the sub-location level similar to EZ. The adjusted incidence ranged from 35 to 159 per 1,000 person years in the under 1 population at sub-location level. There were six significant clusters identified at sub-location level and 17 at EZ level using the spatial scan statistic. Conclusions LBW is a significant health risk on the Kenya coast, possibly under-estimated from previous health information systems, and the risk of LBW is not homogenously distributed across areas served by the County hospital.
Background Intermittent preventive treatment (IPTp) to pregnant women with sulfadoxine–pyrimethamine (SP) is widely implemented for the prevention of malaria in pregnancy and adverse birth outcomes. The efficacy of SP is declining and there are concerns that IPTp may have reduced impact in areas of high resistance. Here we sought to determine the protection afforded by SP as part of IPTp against birth outcomes in an area with high levels of SP resistance on the Kenyan coast. Methods A secondary analysis of surveillance data on deliveries at the Kilifi County hospital between 2015 and 2021 was undertaken in an area of low malaria transmission and high parasite mutations associated with SP resistance. A multivariable logistic regression model was developed to estimate the effect of SP doses on the risk of low birthweight (LBW) deliveries and stillbirths. Results Among 27,786 deliveries, three or more doses of IPTp-SP were associated with a 27% reduction in the risk of LBW (adjusted odds ratio (aOR): 0.73; 95% CI: 0.64, 0.83; p < 0.001) compared to no-dose. A dose-response association was observed with increasing doses of SP from the second trimester linked to increasing protection against LBW deliveries. Three or more doses of IPTp-SP were also associated with a 21% reduction in stillbirth deliveries (aOR: 0.79; 95% CI: 0.65, 0.97; p= 0.044) compared to women who did not take any dose of IPTp-SP. Conclusions The continued, significant association of SP on LBW deliveries suggests that the intervention may have a non-malaria impact on pregnancy outcomes.
Background: Early onset neonatal sepsis (EONS) typically begins prior to, during or soon after birth and may be rapidly fatal. There is paucity of data on the aetiology of EONS in sub-Saharan Africa due to limited diagnostic capacity in this region, despite the associated significant mortality and long-term neurological impairment. Methods: We compared pathogens detected in cord blood samples between neonates admitted to hospital with possible serious bacterial infection (pSBI) in the first 48 hours of life (cases) and neonates remaining well (controls). Cord blood was systematically collected at Kilifi County Hospital (KCH) from 2011-2016, and later tested for 21 bacterial, viral and protozoal targets using multiplex PCR via TaqMan Array Cards (TAC). Results: Among 603 cases (101 [17%] of whom died), 179 (30%) tested positive for ≥1 target and 37 (6.1%) tested positive for multiple targets. Klebsiella oxytoca, Escherichia coli/Shigella spp., Pseudomonas aeruginosa, and Streptococcus pyogenes were commonest. Among 300 controls, 79 (26%) tested positive for ≥1 target, 11 (3.7%) were positive for multiple targets, and K. oxytoca and P. aeruginosa were most common. Cumulative odds ratios across controls: cases (survived): cases (died) were E. coli/Shigella spp. 2.6 (95%CI 1.6-4.4); E. faecalis 4.0 (95%CI 1.1-15); S. agalactiae 4.5 (95%CI 1.6-13); Ureaplasma spp. 2.9 (95%CI 1.3-6.4); Enterovirus 9.1 (95%CI 2.3-37); and Plasmodium spp. 2.9 (95%CI 1.4-6.2). Excluding K. oxytoca and P. aeruginosa as likely contaminants, aetiology was attributed in 9.4% (95%CI 5.1-13) cases using TAC. Leading pathogen attributions by TAC were E. coli/Shigella spp. (3.5% (95%CI 1.7-5.3)) and Ureaplasma spp. (1.7% (95%CI 0.5-3.0)). Conclusions: Cord blood sample may be useful in describing EONS pathogens at birth, but more specific tests are needed for individual diagnosis. Careful sampling of cord blood using aseptic techniques is crucial to minimize contamination. In addition to culturable bacteria, Ureaplasma and Enterovirus were causes of EONS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.