The objective of the present study was to investigate whether the anticarcinogenic activity of conjugated linoleic acid (CLA) is affected by the amount and composition of dietary fat consumed by the host. Because the anticancer agent of interest is a fatty acid, this approach may provide some insight into its mechanism of action, depending on the outcome of these fat feeding experiments. For the fat level experiment, a custom formulated fat blend was used that simulates the fatty acid composition of the US diet. This fat blend was present at 10, 13.3, 16.7 or 20% by weight in the diet. For the fat type experiment, a 20% (w/w) fat diet containing either corn oil (exclusively) or lard (predominantly) was used. Mammary cancer prevention by CLA was evaluated using the rat dimethylbenz[a]anthracene model. The results indicated that the magnitude of tumor inhibition by 1% CLA was not influenced by the level or type of fat in the diet. It should be noted that these fat diets varied markedly in their content of linoleate. Fatty acid analysis showed that CLA was incorporated predominantly in mammary tissue neutral lipids, while the increase in CLA in mammary tissue phospholipids was minimal. Furthermore, there was no evidence that CLA supplementation perturbed the distribution of linoleate or other fatty acids in the phospholipid fraction. Collectively these carcinogenesis and biochemical data suggest that the cancer preventive activity of CLA is unlikely to be mediated by interference with the metabolic cascade involved in converting linoleic acid to eicosanoids. The hypothesis that CLA might act as an antioxidant was also examined. Treatment with CLA resulted in lower levels of mammary tissue malondialdehyde (an end product of lipid peroxidation), but failed to change the levels of 8-hydroxydeoxyguanosine (a marker of oxidatively damaged DNA). Thus while CLA may have some antioxidant function in vivo in suppressing lipid peroxidation, its anticarcinogenic activity cannot be accounted for by protecting the target cell DNA against oxidative damage. The finding that the inhibitory effect of CLA maximized at 1% (regardless of the availability. of linoleate in the diet) could conceivably point to a limiting step in the capacity to metabolize CLA to some active product(s) which is essential for cancer prevention.
The objective of this experiment was to evaluate the effects of treadmill exercise on tumor induction in an experimental model for breast cancer. Female F-344 rats were injected i.p. with 50 mg MNU/kg body wt at 50 and 57 days of age. Animals were assigned to one of five groups: sham exercise or 35% or 70% maximal treadmill running intensity for 20 or 40 min/day, 5 days per week. These work rates represent an exercise intensity level generally considered insufficient to improve cardiovascular fitness (35% maximal intensity) or an aerobic level of exercise sufficient to improve cardiovascular fitness in humans (70% maximal intensity). Rats were exercised for 3 months following carcinogen administration at which time the experiment was terminated. Mammary cancer incidence was reduced by as much as 37% and cancer multiplicity by < 60% at the highest exercise intensity. Unexpectedly, the degree of protection against cancer was proportional to the intensity but not to the duration of exercise.
1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.
Data are provided which indicate that pyruvate and/or acetaldehyde can reverse the inhibition of alanine aminotransferase and aspartate aminotransferase by amino-oxyacetate. It was shown that acetaldehyde could reverse the inhibition of gluconeogenesis from alanine and that pyruvate could reverse the inhibition of urea synthesis by amino-oxyacetate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.