Lion (Panthera leo) populations are in decline throughout most of Africa. The problem is particularly acute in southern Kenya, where Maasai pastoralists have been spearing and poisoning lions at a rate that will ensure near term local extinction. We investigated 2 approaches for improving local tolerance of lions: compensation payments for livestock lost to predators and Lion Guardians, which draws on local cultural values and knowledge to mitigate livestock-carnivore conflict and monitor carnivores. To gauge the overall influence of conservation intervention, we combined both programs into a single conservation treatment variable. Using 8 years of lion killing data, we applied Manski's partial identification approach with bounded assumptions to investigate the effect of conservation treatment on lion killing in 4 contiguous areas. In 3 of the areas, conservation treatment was positively associated with a reduction in lion killing. We then applied a generalized linear model to assess the relative efficacy of the 2 interventions. The model estimated that compensation resulted in an 87-91% drop in the number of lions killed, whereas Lion Guardians (operating in combination with compensation and alone) resulted in a 99% drop in lion killing.
Summary In dryland ecosystems, mobility is essential for both wildlife and people to access unpredictable and spatially heterogeneous resources, particularly in the face of climate change. Fences can prevent connectivity vital for this mobility. There are recent calls for large‐scale barrier fencing interventions to address human–wildlife conflict and illegal resource extraction. Fencing has costs and benefits to people and wildlife. However, the evidence available for facilitating sound decision‐making for fencing initiatives is limited, particularly for drylands. We identify six research areas that are key to informing evaluations of fencing initiatives: economics, edge permeability, reserve design, connectivity, ecosystem services and communities. Policy implications. Implementing this research agenda to evaluate fencing interventions in dryland ecosystems will enable better management and policy decisions. The United Nations Conventions on Migratory Species (CMS) and to Combat Desertification (UNCCD) are appropriate international agreements for moving this agenda forward and leading the development of policies and guidelines on fencing in drylands.
Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts.
Packer et al. reported that fenced lion populations attain densities closer to carrying capacity than unfenced populations. However, fenced populations are often maintained above carrying capacity, and most are small. Many more lions are conserved per dollar invested in unfenced ecosystems, which avoid the ecological and economic costs of fencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.