A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Inhibition of DYRK1A kinase, produced by chromosome 21 and consequently overproduced in trisomy 21 subjects, has been suggested as a therapeutic approach to treating the cognitive deficiencies observed in Down syndrome (DS). We now report the synthesis and potent DYRK1A inhibitory activities of fluoro derivatives of 3,5-di(polyhydroxyaryl)-7-azaindoles (F-DANDYs). One of these compounds (3-(4-fluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine, 5a) was selected for in vivo studies of cognitive rescuing effects in a standard mouse model of DS (Ts65Dn line). Using the Morris water maze task, Ts65Dn mice treated i.p. with 20 mg/kg of 5a performed significantly better than Ts65Dn mice treated with placebo, confirming the promnesiant effect of 5a in the trisomic mice. Overall, these results demonstrate for the first time that selective and competitive inhibition of DYRK1A kinase by the F-DANDY derivative 5a may provide a viable treatment strategy for combating the memory and learning deficiencies encountered in DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.