Individual ferritin molecules can be sensitively detected using magnetic sample modulation (MSM) combined with contact mode atomic force microscopy (AFM). To generate an oscillating magnetic field, an alternating current (AC) was applied to a solenoid placed within the base of the AFM sample stage. When a modulated electromagnetic field is applied to samples, ferromagnetic and paramagnetic nanomaterials are induced to vibrate. The flux of the AC electromagnetic field causes the ferritin samples to vibrate with corresponding rhythm and periodicity of the applied field. This motion can be detected and mapped using contact mode AFM with a soft, nonmagnetic cantilever. Changes in the phase and amplitude of the periodic motion of the sample are sensed by the tip to selectively map vibrating magnetic nanomaterials. Particle lithography was used to create nanopatterned test platforms of ferritin for MSM measurements. Regularly spaced structures of proteins provide precise reproducible dimensions for multiple successive surface measurements at dimensions of tens of nanometers.
Nanografting is a high-precision approach for scanning probe lithography, which provides unique advantages and capabilities for rapidly writing arrays of nanopatterns of thiol self-assembled monolayers (SAMs). Nanografting is accomplished by force- induced displacement of molecules of a matrix SAM, followed immediately by the self-assembly of n-alkanethiol ink molecules from solution. The feedback loop used to control the atomic force microscope tip position and displacement enables exquisite control of forces applied to the surface, ranging from pico to nanonewtons. To achieve high-resolution writing at the nanoscale, the writing speed, direction, and applied force need to be optimized. There are strategies for programing the tip translation, which will improve the uniformity, alignment, and geometries of nanopatterns written using open-loop feedback control. This article addresses the mechanics of automated nanografting and demonstrates results for various writing strategies when nanografting patterns of n-alkanethiol SAMs.
Particle lithography is shown to be a practical, highly reproducible method for patterning proteins on surfaces of mica, glass and gold. High-throughput patterning was achieved with ferritin, apoferritin, bovine serum albumin and immunoglobulin-G. Depending on the ratio of proteins to mesospheres, either porous films or ring structures were produced. This approach can be applied for fundamental investigations of protein-binding interactions of biological systems in surface-bound bioassays and biosensor surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.