Cyclin D1 gene overexpression is a frequent event in a number of human cancers. These observations have led to the suggestion that cyclin D1 alterations might play a role in the etiology of cancer. This possibility is supported by the ®nding that transfection of mammalian cells with cyclin D1 can accelerate progression through the G1 phase of the cell cycle. Moreover, cyclin D1 can function as an oncogene by cooperating with activated Ha-ras to transform primary rat embryo ®broblasts (REFs). In addition, cyclin D1 transgenics develop hyperplasia and neoplasia of the thymus and mammary gland. We have constructed a novel fusion gene consisting of full-length human cyclin D1 and cdk4 genes. This fusion gene was expressed in insect cells and the fusion protein was shown to be enzymatically active. The fusion gene was expressed in mammalian cells under the control of tet-repressor. This fusion gene immortalized primary REFs, and cooperated with activated Haras to transform primary REFs, in terms of anchorageindependent growth in vitro and formation of tumors in vivo. Utilizing a tet-regulated gene expression system, we have shown that proliferation of stably transfected primary REFs in vitro and in vivo is dependent on the continued expression of the cyclin D1-cdk4 fusion gene. These cell lines could be useful in the discovery of novel cancer therapeutics to modulate cyclin D1.cdk4 activity.
The protein kinase family represents an enormous opportunity for drug development. However, the current limitation in structural diversity of kinase inhibitors has complicated efforts to identify effective treatments of diseases that involve protein kinase signaling pathways. We have identified a new structural class of protein serine/threonine kinase inhibitors comprising an aminoimidazo[1,2-a]pyridine nucleus. In this report, we describe the first successful use of this class of aza-heterocycles to generate potent inhibitors of cyclin-dependent kinases that compete with ATP for binding to a catalytic subunit of the protein. Co-crystal structures of CDK2 in complex with lead compounds reveal a unique mode of binding. Using this knowledge, a structure-based design approach directed this chemical scaffold toward generating potent and selective CDK2 inhibitors, which selectively inhibited the CDK2-dependent phosphorylation of Rb and induced caspase-3-dependent apoptosis in HCT 116 tumor cells. The discovery of this new class of ATP-site-directed protein kinase inhibitors, aminoimidazo[1,2-a]pyridines, provides the basis for a new medicinal chemistry tool to be used in the search for effective treatments of cancer and other diseases that involve protein kinase signaling pathways.
A biochemical approach was used to identify proteins which interact with human BRCA1. Through this work, a kinase activity which co-puri®es with BRCA1 has been identi®ed. This kinase activity, which phosphorylates BRCA1 in vitro, was originally identi®ed in Sf9 insect cells but is also present in cells of human origin including breast and ovarian carcinoma cell lines. The BRCA1 kinase activity in vitro is associated with a fragment of BRCA1 encompassing amino acids 329 ± 435. This peptide is also phosphorylated in various human cell lines. A computer-assisted sequence analysis revealed that this peptide was a potential substrate for phosphorylation by PKA, PKC, or CKII. However, phosphorylation by these kinases could not be demonstrated in vitro indicating the presence of another kinase activity. Phosphorylation in vitro requires a minimal domain of BRCA1 encompassing amino acids 379 ± 408. Notably, deletion of this minimal domain abolishes growth suppression by BRCA1 indicating that this domain, as well as phosphorylation within this domain, may be important for BRCA1 function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.