Two-dimensional Lagrangian acceleration statistics of inertial particles in a turbulent boundary layer with free-stream turbulence are determined by means of a particle tracking technique using a high-speed camera moving along the side of the wind tunnel at the mean flow speed. The boundary layer is formed above a flat plate placed horizontally in the tunnel, and water droplets are fed into the flow using two different methods: sprays placed downstream from an active grid, and tubes fed into the boundary layer from humidifiers. For the flow conditions studied, the sprays produce Stokes numbers varying from 0.47 to 1.2, and the humidifiers produce Stokes numbers varying from 0.035 to 0.25, where the low and high values refer to the outer boundary layer edge and the near-wall region, respectively. The Froude number is approximately 1.0 for the sprays and 0.25 for the humidifiers, with a small variation within the boundary layer. The free-stream turbulence is varied by operating the grid in the active mode as well as a passive mode (the latter behaves as a conventional grid). The boundary layer momentum-thickness Reynolds numbers are 840 and 725 for the active and passive grid respectively. At the outer edge of the boundary layer, where the shear is weak, the acceleration probability density functions are similar to those previously observed in isotropic turbulence for inertial particles. As the boundary layer plate is approached, the tails of the probability density functions narrow, become negatively skewed, and their peak occurs at negative accelerations (decelerations in the streamwise direction). The mean deceleration and its root mean square (r.m.s.) increase to large values close to the plate. These effects are more pronounced at higher Stokes number. In the vertical direction, there is a slight downward mean deceleration and its r.m.s., which is lower in magnitude than that of the streamwise component, peaks in the buffer region. Although there are free-stream turbulence effects, and the complex boundary layer structure plays an important role, a simple model suggests that the acceleration behaviour is dominated by shear, gravity and inertia. The results are contrasted with inertial particles in isotropic turbulence and with fluid particle acceleration statistics in a boundary layer. The background velocity field is documented by means of hot-wire anemometry and laser Doppler velocimetry measurements. These appear to be the first Lagrangian acceleration measurements of inertial particles in a shear flow.
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorological observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3-D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.