▪ Abstract Passive scalar behavior is important in turbulent mixing, combustion, and pollution and provides impetus for the study of turbulence itself. The conceptual framework of the subject, strongly influenced by the Kolmogorov cascade phenomenology, is undergoing a drastic reinterpretation as empirical evidence shows that local isotropy, both at the inertial and dissipation scales, is violated. New results of the complex morphology of the scalar field are reviewed, and they are related to the intermittency problem. Recent work on other aspects of passive scalar behavior—its spectrum, probability density function, flux, and variance—is also addressed.
Using an active grid devised by Makita (1991), shearless decaying turbulence is studied for the Taylor-microscale Reynolds number, Rλ, varying from 50 to 473 in a small (40 × 40 cm2 cross-section) wind tunnel. The turbulence generator consists of grid bars with triangular wings that rotate and flap in a random way. The value of Rλ is determined by the mean speed of the air (varied from 3 to 14 m s–1) as it passes the rotating grid, and to a lesser extent by the randomness and rotation rate of the grid bars. Our main findings are as follows. A weak, not particularly well-defined scaling range (i.e. a power-law dependence of both the longitudinal (u) and transverse (v) spectra, F11(k1) and F22(k1) respectively, on wavenumber k1) first appears at Rλ ∼ 50, with a slope, n1, (for the u spectrum) of approximately 1.3. As Rλ was increased, n1 increased rapidly until Rλ ∼ 200 where n ∼ 1.5. From there on the increase in n1 was slow, and even by Rλ = 473 it was still significantly below the Kolmogorov value of 1.67. Over the entire range, 50 [les ] Rλ [les ] 473, the data were well described by the empirical fit: $n_1 = \frac{5}{3}(1-3.15R_\lambda^{-2/3})$. Using a modified form of the Kolmogorov similarity law: F11(k1) = C1*ε2/3k1–5/3(k 1η)5/3–n1 where ε is the turbulence energy dissipation rate and η is the Kolmogorov microscale, we determined a linear dependence between n1 and C1*: C1* = 4.5 – 2.4n1. Thus for n1 = 5/3 (which extrapolation of our results suggests will occur in this flow for Rλ ∼ 104), C1* = 0.5, the accepted high-Reynolds-number value of the Kolmogorov constant. Analysis of the p.d.f. of velocity differences Δu(r) and Δv(r) where r is an inertial subrange interval, conditional dissipation, and other statistics showed that there was a qualitative difference between the turbulence for Rλ < 100 (which we call weak turbulence) and that for Rλ > 200 (strong turbulence). For the latter, the p.d.f.s of Δu(r) and Δv(r) had super Gaussian tails and the dissipation (both of the u and v components) conditioned on Δu(r) and Δv(r) was a strong function of the velocity difference. For Rλ < 100, p.d.f.s of Δu(r) and Δv(r) were Gaussian and conditional dissipation statistics were weak. Our results for Rλ > 200 are consistent with the predictions of the Kolmogorov refined similarity hypothesis (and make a distinction between the dynamical and kinematical contributions to the conditional statistics). They have much in common with similar statistics done in shear flows at much higher Rλ, with which they are compared.
The statistics of a turbulent passive scalar (temperature) and their Reynolds number dependence are studied in decaying grid turbulence for the Taylor-microscale Reynolds number, R λ , varying from 30 to 731 (21 6 P e λ 6 512). A principal objective is, using a single (and simple) flow, to bridge the gap between the existing passive gridgenerated low-Péclet-number laboratory experiments and those done at high Péclet number in the atmosphere and oceans. The turbulence is generated by means of an active grid and the passive temperature fluctuations are generated by a mean transverse temperature gradient, formed at the entrance to the wind tunnel plenum chamber by an array of differentially heated elements. A well-defined inertial-convective scaling range for the scalar with a slope, n θ , close to the Obukhov-Corrsin value of 5/3, is observed for all Reynolds numbers. This is in sharp contrast with the velocity field, in which a 5/3 slope is only approached at high R λ . The Obukhov-Corrsin constant, C θ , is estimated to be 0.45-0.55. Unlike the velocity spectrum, a bump occurs in the spectrum of the scalar at the dissipation scales, with increasing prominence as the Reynolds number is increased. A scaling range for the heat flux cospectrum was also observed, but with a slope around 2, less than the 7/3 expected from scaling theory. Transverse structure functions of temperature exist at the third and fifth orders, and, as for even-order structure functions, the width of their inertial subranges dilates with Reynolds number in a systematic way. As previously shown for shear flows, the existence of these odd-order structure functions is a violation of local isotropy for the scalar differences, as is the existence of non-zero values of the transverse temperature derivative skewness (of order unity) and hyperskewness (of order 100). The ratio of the temperature derivative standard deviation along and normal to the gradient is 1.2 ± 0.1, and is independent of Reynolds number. The refined similarity hypothesis for the passive scalar was found to hold for all R λ , which was not the case for the velocity field. The intermittency exponent for the scalar, µ θ , was found to be 0.25 ± 0.05 with a possible weak R λ dependence, unlike the velocity field, where µ was a strong function of Reynolds number. New, higher-Reynolds-number results for the velocity field, which smoothly follow the trends of Mydlarski & Warhaft (1996), are also presented.
In this survey we consider the impact of turbulence on cloud formation from the cloud scale to the droplet scale. We assess progress in understanding the effect of turbulence on the condensational and collisional growth of droplets and the effect of entrainment and mixing on the droplet spectrum. The increasing power of computers and better experimental and observational techniques allow for a much more detailed study of these processes than was hitherto possible. However, much of the research necessarily remains idealized and we argue that it is those studies which include such fundamental characteristics of clouds as droplet sedimentation and latent heating that are most relevant to clouds. Nevertheless, the large body of research over the last decade is beginning to allow tentative conclusions to be made. For example, it is unlikely that small-scale turbulent eddies (i.e. not the energy-containing eddies) alone are responsible for broadening the droplet size spectrum during the initial stage of droplet growth due to condensation. It is likely, though, that small-scale turbulence plays a significant role in the growth of droplets through collisions and coalescence. Moreover, it has been possible through detailed numerical simulations to assess the relative importance of different processes to the turbulent collision kernel and how this varies in the parameter space that is important to clouds. The focus of research on the role of turbulence in condensational and collisional growth has tended to ignore the effect of entrainment and mixing and it is arguable that they play at least as important a role in the evolution of the droplet spectrum. We consider the role of turbulence in the mixing of dry and cloudy air, methods of quantifying this mixing and the effect that it has on the droplet spectrum. Copyright
We investigate the settling speeds and root mean square (r.m.s.) velocities of inertial particles in isotropic turbulence with gravity using experiments with water droplets in air turbulence from 32 loudspeaker jets and direct numerical simulations (DNS). The dependence on particle inertia, gravity and the scales of both the smallest and largest turbulent eddies is investigated. We isolate the mechanisms of turbulence settling modification and find that the reduced settling speeds of large particles in experiments are due to nonlinear drag effects. We demonstrate using DNS that reduced settling speeds with linear drag (e.g. see Nielsen, J. Sedim. Petrol., vol. 63, 1993, pp. 835–838) only arise in artificial flows that, by design, eliminate preferential sweeping by the eddies. Gravity and inertia both reduce the particle r.m.s. velocities and falling particles are more responsive to vertical than to horizontal fluctuations. The model by Wang & Stock (J. Atmos. Sci., vol. 50, 1993, pp. 1897–1913) captures these trends
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.