Key Points The Myc oncoprotein targets central regulators of the SUMOylation machinery, resulting in a hyper-SUMOylation state in Myc-induced lymphoma. Targeting SUMOylation by genetic or pharmacologic means represents a novel therapeutic option for lymphomas with MYC involvement.
Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.
Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Identifying biological markers or pathways associated with this disease may allow the understanding of its pathogenesis at a molecular level. The vitreous is the body fluid closest to the disease-affected tissue and possibly also an effector of pathological processes relevant for ERU. Surgical removal of vitreous leads to cessation of relapses in spontaneous uveitis of both man and horse, therefore vitreous composites are likely to contribute to disease progression. Uveitic vitreous is likely to contain potential biomarkers in relatively undiluted quantities. With the goal to identify these markers, we systematically compared vitreous from healthy and disease-affected eyes by proteomic profiling. Nine differentially expressed proteins were identified, that are functionally related to immune response, inflammation, and maintenance of the blood-retinal barrier. One of these, pigment epithelium-derived factor, a protein involved in maintaining a proper blood-retina barrier as well as protecting from neoangiogenesis was additionally found to be down-regulated within uveitic retinal lesions whereas, conversely, vascular endothelial growth factor was found to be up-regulated at these sites. Together, these changes point to as of yet undiscovered biological pathways involved in the pathogenesis of this autoimmune disease.
Squamous cell cancer of the head and neck (SCCHN) is the sixth leading cause for cancer deaths worldwide. Despite extense knowledge of risk factors and pathogenesis about 50 percent of all patients and essentially every patient with metastatic SCCHN eventually die from this disease. We analyzed the clinical data and performed immunohistochemistry for Epidermal growth factor receptor (EGFR) and Aurora kinase A (Aurora-A) expression in 180 SCCHN patients. Patients characterized by elevated EGFR and elevated Aurora-A protein expression in tumor tissue represent a risk group with poor disease-free and overall survival (EGFRlow Aurora-Alow versus EGFRhigh Aurora-Ahigh, p = 0.024). Treating SCCHN cell lines with a pan-Aurora kinase inhibitor resulted in defective cytokinesis, polyploidy and apoptosis, which was effective irrespective of the EGFR status. Combined Aurora kinase and EGFR targeting using a monoclonal anti-EGFR antibody was more effective compared to single EGFR and Aurora kinase inhibition. Comparing pan-Aurora kinase and Aurora-A targeting hints towards a strong and clinically relevant biological effect mediated via Aurora kinase B. Taken together, our findings characterize a new poor risk group in SCCHN patients defined by elevated EGFR and Aurora-A protein expression. Our results demonstrate that combined targeting of EGFR and Aurora kinases represents a therapeutic means to activate cell cycle checkpoints and apoptosis in SCCHN.
Little is known about the biological mechanisms underpinning the pathology of schizophrenia. We have analysed the proteome of stimulated and unstimulated peripheral blood mononuclear cells (PBMCs) from schizophrenia patients and controls as a potential model of altered cellular signaling using liquid-chromatography mass spectrometry proteomic profiling. PBMCs from patients and controls were stimulated for 72 h in vitro using staphylococcal enterotoxin B. In total, 18 differentially expressed proteins between first-onset, antipsychotic-naive patients and controls in the unstimulated and stimulated conditions were identified. Remarkably, eight of these proteins were associated with the glycolytic pathway and patient-control differences were more prominent in stimulated compared with unstimulated PBMCs. None of these proteins were altered in chronically ill antipsychotic-treated patients. Non-linear multivariate statistical analysis showed that small subsets of these proteins could be used as a signal for distinguishing first-onset patients from controls with high precision. Functional analysis of PBMCs did not reveal any difference in the glycolytic rate between patients and controls despite increased levels of lactate and the glucose transporter-1, and decreased levels of the insulin receptor in patients. In addition, subjects showed increased serum levels of insulin, consistent with the idea that some schizophrenia patients are insulin resistant. These results show that schizophrenia patients respond differently to PBMC activation and this is manifested at disease onset and may be modulated by antipsychotic treatment. The glycolytic protein signature associated with this effect could therefore be of diagnostic and prognostic value. Moreover, these results highlight the importance of using cells for functional discovery and show that it may not be sufficient to measure protein expression levels in static states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.