A new coupled global NCEP Reanalysis for the period 1979-present is now available, at much higher temporal and spatial resolution, for climate studies. T he first reanalysis at NCEP (all acronyms are defined in the appendix), conducted in the 1990s, resulted in the NCEP-NCAR reanalysis (Kalnay et al. 1996), or R1 for brevity, and ultimately covered many years, from 1948 to the present (Kistler et al. 2001). It is still being executed at NCEP, to the benefit of countless users for monthly, and even daily, updates of the current state of the atmosphere. At the same time, other reanalyses were being conducted, namely, ERA-15 (Gibson et al. 1997) was executed for a more limited period (1979-93) at the ECMWF, COLA conducted a short reanalysis covering the May 1982-November 1983 period (Paolino et al. 1995), and NASA GSFC conducted a reanalysis covering the 1980-94 period (Schubert et al. 1997). The general purpose of conducting reanalyses is to produce multiyear global state-of-the-art gridded representations of atmospheric states, generated by a constant model and a constant data assimilation system. To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand analyses prior to about 1965. The hope was that a reanalysis,
The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004, is described and evaluated in this paper. The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability of a dynamical modeling tool with demonstrated skill should result in overall improvement in the operational seasonal forecasts produced by CPC. The atmospheric component of the CFS is a lower-resolution version of the Global Forecast System (GFS) that was the operational global weather prediction model at NCEP during 2003. The ocean component is the GFDL Modular Ocean Model version 3 (MOM3). There are several important improvements inherent in the new CFS relative to the previous dynamical forecast system. These include (i) the atmosphere–ocean coupling spans almost all of the globe (as opposed to the tropical Pacific only); (ii) the CFS is a fully coupled modeling system with no flux correction (as opposed to the previous uncoupled “tier-2” system, which employed multiple bias and flux corrections); and (iii) a set of fully coupled retrospective forecasts covering a 24-yr period (1981–2004), with 15 forecasts per calendar month out to nine months into the future, have been produced with the CFS. These 24 years of fully coupled retrospective forecasts are of paramount importance to the proper calibration (bias correction) of subsequent operational seasonal forecasts. They provide a meaningful a priori estimate of model skill that is critical in determining the utility of the real-time dynamical forecast in the operational framework. The retrospective dataset also provides a wealth of information for researchers to study interactive atmosphere–land–ocean processes.
At the National Centers for Environmental Prediction (NCEP), a new three-dimensional variational data assimilation (3DVAR) analysis system was implemented into the operational Global Data Assimilation System (GDAS) on 1 May 2007. The new analysis system, the Gridpoint Statistical Interpolation (GSI), replaced the Spectral Statistical Interpolation (SSI) 3DVAR system, which had been operational since 1991. The GSI was developed at the Environmental Modeling Center at NCEP as part of an effort to create a more unified, robust, and efficient analysis scheme. The key aspect of the GSI is that it formulates the analysis in model grid space, which allows for more flexibility in the application of the background error covariances and makes it straightforward for a single analysis system to be used across a broad range of applications, including both global and regional modeling systems and domains.Due to the constraints of working with an operational system, the final GDAS package included many changes other than just a simple replacing of the SSI with the new GSI. The new GDAS package contained an upgrade to the Global Forecast System model, including a new vertical coordinate, as well as new features in the GSI that were never developed for the SSI. Some of these new features included changes to the observation selection, quality control, minimization algorithm, dynamic balance constraint, and assimilation of new observation types. The evaluation of the new system relative to the SSI-based system was performed for nearly an entire year of analyses and forecasts. The objective and subjective evaluations showed that the new package exhibited superior forecast performance relative to the old SSI-based system. The new system has been shown to improve forecast skill in the tropics and substantially reduce the short-term forecast error in the extratropics. This implementation has laid the groundwork for future scientific advancements in data assimilation at NCEP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.