Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated.
The critical role that dopants play in semiconductor devices has stimulated research on the properties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, doped with intentional impurities. We review advances in the chemical synthesis of doped nanocrystals, in the theoretical understanding of the fundamental mechanisms that control doping, and in the creation of highly conducting nanocrystalline films. Because impurities can be used to alter the properties of nanoscale materials in desirable and controllable ways, doped nanocrystals can address key problems in applications from solar cells to bioimaging.
We report on the epitaxial growth of a group-IV ferromagnetic semiconductor, Mn(x)Ge(1-x), in which the Curie temperature is found to increase linearly with manganese (Mn) concentration from 25 to 116 kelvin. The p-type semiconducting character and hole-mediated exchange permit control of ferromagnetic order through application of a +/-0.5-volt gate voltage, a value compatible with present microelectronic technology. Total-energy calculations within density-functional theory show that the magnetically ordered phase arises from a long-range ferromagnetic interaction that dominates a short-range antiferromagnetic interaction. Calculated spin interactions and percolation theory predict transition temperatures larger than measured, consistent with the observed suppression of magnetically active Mn atoms and hole concentration.
A combination of angle-resolved photoemission and scanning tunneling microscopy is used to explore the possibilities for tailoring the electronic structure of gold atom chains on silicon surfaces. It is shown that the interchain coupling and the band filling can be adjusted systematically by varying the step spacing via the tilt angle from Si͑111͒. Planes with odd Miller indices are stabilized by chains of gold atoms. Metallic bands and Fermi surfaces are observed. These findings suggest that atomic chains at stepped semiconductor substrates make a highly flexible class of solids approaching the one-dimensional limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.