Recent studies indicate that extracellular vesicles are an important source material for many clinical applications, including minimally-invasive disease diagnosis. However, challenges for rapid and simple extracellular vesicle collection have hindered their application. We have developed and validated a novel class of peptides (which we named venceremin, or Vn) that exhibit nucleotide-independent specific affinity for canonical heat shock proteins. The Vn peptides were validated to specifically and efficiently capture HSP-containing extracellular vesicles from cell culture growth media, plasma, and urine by electron microscopy, atomic force microscopy, sequencing of nucleic acid cargo, proteomic profiling, immunoblotting, and nanoparticle tracking analysis. All of these analyses confirmed the material captured by the Vn peptides was comparable to those purified by the standard ultracentrifugation method. We show that the Vn peptides are a useful tool for the rapid isolation of extracellular vesicles using standard laboratory equipment. Moreover, the Vn peptides are adaptable to diverse platforms and therefore represent an excellent solution to the challenge of extracellular vesicle isolation for research and clinical applications.
Haemorrhagic kidney syndrome (HKS), a serious disease affecting Atlantic salmon on the east coast of Canada, was determined to be caused by infectious salmon anaemia virus (ISAV) through the isolation of the pathogen on the SHK-1 (salmon head kidney) cell line and confirmation by ISAV-specific immunofluorescent antibody test (IFAT) and reverse transcriptase polymerase chain reaction (RT-PCR). In addition, the defining histopathology of HKS could be reproduced following the injection of material that rendered challenged fish ISAV-positive by cell culture in the absence of any other detectable pathogen. Preliminary nucleotide sequence comparison does not suggest any direct epidemiological connection between the Canadian and Norwegian isolates.
The complexity of human tissue fluid precludes timely identification of cancer biomarkers by immunoassay or mass spectrometry. An increasingly attractive strategy is to primarily enrich extracellular vesicles (EVs) released from cancer cells in an accelerated manner compared to normal cells. The Vn96 peptide was herein employed to recover a subset of EVs released into the media from cellular models of breast cancer. Vn96 has affinity for heat shock proteins (HSPs) decorating the surface of EVs. Reflecting their cells of origin, cancer EVs displayed discrete differences from those of normal phenotype. GELFrEE LC/MS identified an extensive proteome from all three sources of EVs, the vast majority having been previously reported in the ExoCarta database. Pathway analysis of the Vn96-affinity proteome unequivocally distinguished EVs from tumorigenic cell lines (SKBR3 and MCF-7) relative to a non-tumorigenic source (MCF-10a), particularly with regard to altered metabolic enzymes, signaling, and chaperone proteins. The protein data sets provide valuable information from material shed by cultured cells. It is probable that a vast amount of biomarker identities may be collected from established and primary cell cultures using the approaches described here.
Using Western blot to examine the nature of soluble antigens produced by Renibacterium salmoninarum, it was found that the major 57-kilodaIton (kDa) antigen was unstable. SDS-PAGE of extracellular product (ECP) fractions showed that degradation of the 57-kDa protein increased with time and increased temperature. Several lower molecular mass pcptides accumulated temporarily from this degradation. Phenylmethylsuiphonyl fluoride prevented breakdown of the 57-kDa protein suggesting a serine protease present in the ECPs was responsible. The results indicated that most, if not all, immunoreaetive bands in ECP fractions, other than the 57-kDa protein, arose as a result of degradation of this protein. Western blot analysis of two dimensional gels revealed that the presumptive proteolytic activity was associated with the 57-kDa antigen and several of the apparent degradation products. Many common peptide fragments appeared to be generated from heat-induced proteolysis of these protein moieties, confirming the familial relationship between much of the immunoreaetive material in ECP fractions. The results suggested that the 57-kDa antigen is autolytic. Western blot analysis of tissue samples from Atlantic salmon, Salmo salar L., infected with R. salmoninarum suggested that this lability of the 57'kDa antigen also occurred in situ.
A simple, rapid PCR assay for the identification of Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.) tissues detected DNA extracted from between 4 and 40 bacterial cells. PCR was at least as sensitive as culture when it was used to identify subclinically infected fish experimentally challenged with R. salmoninarum. However, PCR identified much higher numbers of kidney tissue and ovarian fluid samples from commercially reared broodstock fish to be positive for R. salmoninarum than did culture. This difference may be due to the antibiotic chemotherapy of broodstock fish used by the industry in 1994 to control the vertical transmission of R. salmoninarum. A much closer relationship between PCR and culture results was observed for ovarian fluid samples collected from broodstock fish in 1993. Also, PCR scored a much higher percentage of kidney tissue samples than ovarian fluid samples from 1994 broodstock fish positive for R. salmoninarum, which may reflect the uneven distribution of the pathogen in different fish tissues. Inclusion of a nested probe to identify the PCR-positive 1994 ovarian fluid samples increased the sensitivity of detection to between one and four cells and the number of samples that scored positive by almost threefold. These data indicate that many infected ovarian fluid samples contained very low numbers of R. salmoninarum cells and, because almost all these samples were culture negative, that PCR may have detected dead or otherwise unculturable bacterial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.