The Mauthner cell (M-cell) is one of the few identifiable neurons in the vertebrate central nervous system. The ability to locate the M-cell, along with its inputs and outputs, has resulted in important findings in diverse areas of neurobiology including the molecular biology of neurons, synaptic and systems physiology, behavior, development, and neuroethology. The review provides a brief overview of the M-cell and then focuses on recent studies applying state-of-the-art techniques to address new issues and revisit old ones. One advantage of this preparation is the ability to conduct multidisciplinary studies from the subcellular to behavioral levels. For example, studies of activity-dependent changes in the strength of mixed electrotonic and chemical synapses on the M-cell's lateral dendrite in vivo have been correlated with changes in the probability of eliciting a fast startle response initiated by the M-cell and its associated circuits. Similarly, it is now possible to image the activity of the M-cell and its homologs while observing motor behavior in zebrafish larvae. These approaches will provide direct tests of the functional properties of complex neural networks. Moreover, molecular mechanisms that underlie neuronal development can be tested directly with this neuron and its segmental homologs, because these cells occur in singular pairs at defined locations. Finally, after spinal cord injury, the M-cell's axon regenerates, but does not follow its original course, and the startle response gradually recovers. The accessibility of the M-cell system offers the promise that strategies employed in restoring the function of a neural network will be revealed. Thus, we anticipate that the M-cell system will become a favored preparation for multidisciplinary studies on the neuronal basis of behavior and the recovery of behavior after injury. NEUROSCIENTIST 6:26-38, 2000
The hindbrain is evolutionarily conserved among diverse vertebrate phyla. In vertebrate embryos, the hindbrain is segmentally organized as a series of overt swellings known as rhombomeres. In the larval zebrafish Brachydanio rerio, conspicuous and identifiable reticulospinal neurons are positioned in the center of rhombomeres. Segmentally homologous reticulospinal neurons that share a range of morphological, developmental, and biochemical features occupy adjacent rhombomeres. We have recently shown that reticulospinal neurons of the zebrafish survive ontogeny without considerable morphological modification and we suggested that homologous neurons may share similar functions at different stages of development (Lee and Eaton: Journal of Comparative Neurology 304:34-52, 1991). The goldfish Carassius auratus, a related cyprinid, is especially suited for neurophysiological and behavioral studies. However, it is not yet known if the various reticulospinal neurons of zebrafish are generalizable to other species such as the goldfish. Therefore, we sought to examine the extent to which reticulospinal neurons of the zebrafish are also present in the adult goldfish. Analysis of 45 brains retrogradely labeled with horseradish peroxidase (HRP) from the spinal cord showed that reticulospinal neurons are arranged as a series of seven segments within the hindbrain; a regular interval of approximately 200 microns separates adjacent segments. Although the goldfish reticulospinal system has more neurons than the zebrafish, many reticulospinal neuron types continue to be identifiable. Moreover, comparisons of dendritic arborizations and axon paths between the two species showed that the morphology between various neuron types is virtually identical. The cross-taxonomic similarities between the reticulospinal systems of these related cyprinids make it possible to pursue functional considerations of segmentally homologous neurons in the goldfish hindbrain.
A single action potential in one of a pair of reticulospinal neurons, the Mauthner cells, precedes a short-latency electromyographic response of the trunk and tail musculature on the opposite side of the body and a fast startle response in goldfish. It has been postulated that not only the Mauthner cell, but also an array of neurons can trigger or participate in fast startle responses (Eaton et al. 1991). We have selectively ablated the Mauthner cells in goldfish to study how neurons of the brainstem fast startle response network interact. The probability of eliciting a fast startle response was significantly less in fish with double Mauthner cell ablations, as compared to the responsiveness of control fish. The finding that there is a significant decrease in the occurrence of fast startle responses in animals with no Mauthner cells, implies that the Mauthner cell may play a role in triggering the involvement of the other network elements in fast startle responses. We hypothesize that Mauthner cell activation may be important in bringing those reticulospinal neurons that are "primed" by the behavioral context to threshold and provides the basis for studies focused on the interactive nature of the brainstem startle response network.
The nucleus isthmi of fish and amphibians has reciprocal connections with the optic tectum, and biochemical studies suggested that it may provide a major cholinergic input to the tectum. In goldfish, we have combined immunohistochemical staining for choline acetyltransferase with retrograde labeling of nucleus isthmi neurons after tectal injections of horseradish peroxidase. Seven fish received tectal horseradish peroxidase injections, and brain tissue from these animals was subsequently processed for the simultaneous visualization of horseradish peroxidase and choline acetyltransferase. In many nucleus isthmi neurons the dense horseradish peroxidase label obscured the choline acetyltransferase reaction product but horseradish peroxidase and choline acetyltransferase were colocalized in 54 cells from nine nuclei isthmi. The somata of nucleus reticularis mesencephali neurons stained so intensely for choline acetyltransferase that we could not determine whether they were labelled also with horseradish peroxidase. However, the large choline acetyltransferase-immunoreactive axons of nucleus reticularis mesencephali neurons stained intensely enough for us to follow them rostrally; the axons are clustered together until the level of the rostral tectum where two groupings form: one travels into the tectum and the other travels rostroventrally to cross the midline and enter the contralateral diencephalic preoptic area. We conclude therefore that cholinergic neurons project to the optic tectum from the nucleus isthmi as well as nucleus reticularis mesencephali in goldfish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.