We report optimal conditions for assaying highly purified human lactate dehydrogenase isoenzymes with the lactate-to-pyruvate and pyruvate-to-lactate reactions, as they apply to human serum. Interconversion of results between reactions is not practicable. Measurements of lactate dehydrogenase in either reaction direction at 25, 30, or 37 degrees C can be equally reliable if the volume fraction and the resulting deltaA/min is small. However, for interinstrument and interlaboratory comparisons, results from the lactate-to-pyruvate reaction are more reliable.
We describe a portable clinical chemistry analyzer for point-of-care measurements of multiple analytes in less than 10 min from approximately 40 microL of whole blood (fingerstick or venous). Whole blood is applied directly to a 7.9-cm-diameter, single-use plastic rotor containing liquid diluent and greater than or equal to 4-12 tests in the form of 1- to 2-mm-diameter dry reagent beads. The reagent/rotor is immediately placed in a portable instrument along with a ticket/label results card. As the instrument spins the rotor, capillary and rotational forces process the blood into diluted plasma, distribute the patient's diluted sample to cuvettes containing the reagent beads, and mix the diluted sample with the reagents. The instrument monitors the chemical reactions optically at nine wavelengths; sample volume and temperature are also measured optically. The calibration data for each reagent are read from a bar code on the periphery of each rotor. The instrument processes all the measurements to calculate, store, print, and communicate the results. Each reagent/rotor contains an enzymatic control that must be within a defined range before the results from that analysis are reported.
DNA synthesized in human cells within the first hour after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in nonirradiated cells. The size of these segments approximates the average distance between pyrimidine dimers in the parental DNA. This suggests that the dimers interrupt normal DNA synthesis and result in gaps in the newly synthesized DNA. However, DNA synthesized in human cells at long times after irradiation is made in segments equal or nearly equal to those synthesized by nonirradiated cells. The recovery of the ability to synthesize DNA in segments of normal size occurs in normal human cells, where the dimers are excised, and also in cells of the human mutants xeroderma pigmentosum (XP), where the dimers remain in the DNA. This observation implies that the pyrimidine dimer may not be the lesion that causes DNA to be synthesized in smaller than normal segments.
DNA synthesized in human cells after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in unirradiated cells. Within several hours after irradiation these smaller units are both elongated and joined together. This repair process has been observed in normal human fibroblasts, HeLa cells, and fibroblasts derived from three types of xeroderma pigmentosum patients-uncomplicated with respect to neurological problems, complicated (de Sanctis-Cacchione syndrome), and one with the clinical symptoms of xeroderma pigmentosum but with normal repair replication. The ability of human cells to elongate and to join DNA strands despite the presence of pyrimidine dimers enables them to divide without excising the dimers present in their DNA. It may be this mechanism which enables xeroderma pigmentosum cells to tolerate small doses of UV radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.