This report reviews various test techniques published in the literature for evaluating carbon fiber via the single-filament tensile test, the dry bundle test, the resin-impregnated strand test, and the single-fiber fragmentation test (optical microscopy and acoustic emission). Experimental procedures, data analysis, and statistical tensile strength theory are also described. Each technique is followed by a discussion of the advantages and limitations. Furthermore, a materials property database has been developed that includes mechanical properties for several commercially available carbon fibers.n Acknowledgments
Fanout Wafer Level Packaging (FoWLP) is a very attractive solution for microelectronics applications requiring optimized performance, smaller form factor, and low cost. By utilizing such an approach where system integration is done to multiple chips on a single package frame, the need to ensure much higher levels of process integrity, quality, and reliability becomes absolutely critical, especially if the total product volume lies in the range of tens of millions of units. A single defect type may negate the benefits of such an approach because the cost of losing one FoWLP unit results in the loss of multiple devices. Thus, yield, quality, and reliability optimization using such a package solution is critical for successful large scale manufacturing. In this talk, the issue of defectivity and its impact on quality and reliability on Wafer-Level (WL) devices with regards to the issue of Die Edge Delamination (DED) and Chip Mechanical Integrity (CMI) is discussed. Through this discussion and the resulting solutions found to improve WL quality and reliability, better understanding on how to assess the quality and reliability of a given FoWLP solution for large scale production will be demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.