Two potent inhibitors based on the crystal structure of influenza virus sialidase have been designed. These compounds are effective inhibitors not only of the enzyme, but also of the virus in cell culture and in animal models. The results provide an example of the power of rational, computer-assisted drug design, as well as indicating significant progress in the development of a new therapeutic or prophylactic treatment for influenza infection.
The development of sialidase inhibitor-based potential anti-influenza drugs using rational drug design techniques has been of recent interest. The present study details as investigation of the active site of influenza virus sialidase by using the program GRID in an attempt to design more potent inhibitors in the hope they will eventually lead to anti-influenza drugs. A number of different probes (amino, carboxy, hydroxy, methyl, etc) have been used in an effort to determine the functional groups most likely to improve the binding of the starting template 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en). The data have correctly predicted the binding regions for the carboxylate, acetamido (NH and methyl), and glycerol (OH) groups of N-acetylneuraminic acid. Moreover, the data suggest that the addition of certain functionalities (amino group) at the C-4 position should enhance the overall binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.