Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to differentiate into multiple cell types without propagating DNA errors. Previous studies have suggested that mechanisms of genome surveillance, including DNA repair, are superior in mouse embryonic stem cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H 2 O 2 , UV-C, ionizing radiation, or psoralen) than human primary fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic maintenance pathways are enhanced in human embryonic stem cells, relative to differentiated human cells.
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by Nucleotide Excision Repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G1 phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Interstrand cross-links (ICLs) are absolute blocks to transcription and replication and can provoke genomic instability and cell death. Studies in bacteria define a two-stage repair scheme, the first involving recognition and incision on either side of the cross-link on one strand (unhooking), followed by recombinational repair or lesion bypass synthesis. The resultant monoadduct is removed in a second stage by nucleotide excision repair. In mammalian cells, there are multiple, but poorly defined, pathways, with much current attention on repair in S phase. However, many questions remain, including the efficiency of repair in the absence of replication, the factors involved in cross-link recognition, and the timing and demarcation of the first and second repair cycles. We have followed the repair of laser-localized lesions formed by psoralen (cross-links/ monoadducts) and angelicin (only monoadducts) in mammalian cells. Both were repaired in G 1 phase by nucleotide excision repair-dependent pathways. Removal of psoralen adducts was blocked in XPC-deficient cells but occurred with wild type kinetics in cells deficient in DDB2 protein (XPE). XPC protein was rapidly recruited to psoralen adducts. However, accumulation of DDB2 was slow and XPC-dependent. Inhibition of repair DNA synthesis did not interfere with DDB2 recruitment to angelicin but eliminated recruitment to psoralen. Our results demonstrate an efficient ICL repair pathway in G 1 phase cells dependent on XPC, with entry of DDB2 only after repair synthesis that completes the first repair cycle. DDB2 accumulation at sites of cross-link repair is a marker for the start of the second repair cycle. Interstrand cross-links (ICLs)2 are among the most dangerous DNA lesions. They are absolute blocks to replication and transcription and, unlike monoadducts, cannot be carried through a proliferative cycle. Their accumulation over time is believed to contribute to genomic instability and aging in tissues and organs (1, 2). If not removed, they can provoke chromosomal breakage, rearrangements, or cell death (3, 4). Mice and humans deficient in genes associated with ICL repair, such as members of the ERCC1-XPF complex, display severe pathology and greatly reduced life span (2, 5-9). Given the challenge of repairing lesions that engage both strands of the duplex, it is understandable that multiple repair pathways are engaged (10 -12) and that repair is more complex than for monoadducts.In Escherichia coli, the NER apparatus incises one strand on either side of the ICL. This produces an "unhooked" substrate with the excised fragment still attached to the non-incised strand by the cross-linking agent. The immediate product of unhooking is typically depicted as a gapped structure with the cross-linked oligonucleotide flipped out of the duplex (although this structure may not actually form (13)). The incised/gapped strand is repaired by homology-directed repair using information from an undamaged homologous chromosome (14 -17). The gap may also be filled by lesion bypass sy...
DNA interstrand cross-links are formed by chemotherapy drugs as well as by products of normal oxidative metabolism. Despite their importance, the pathways of cross-link metabolism are poorly understood. Laser confocal microscopy has become a powerful tool for studying the repair of DNA lesions that can be detected by immunofluorescent reagents. In order to apply this approach to cross-link repair, we have synthesized conjugates of 4,5',8-trimethylpsoralen (TMP) and easily detected compounds such as Lissamine rhodamine B sulfonyl chloride (LRB-SC), biotin, and digoxigenin. These conjugates are activated by UVA, and we have analyzed the intracellular localization of DNA damage and DNA reactivity by confocal and immunofluorescence microscopy. The LRB-SC-TMP conjugate 2 appeared mainly in the mitochondria, while the biotin-TMP conjugate 4 preferentially localized in the cytoplasm. Adducts formed by UVA and digoxigenin conjugates of TMP 7a and 4,5'-dimethylangelicin (DMA) 7b, which forms only monoadducts, were largely localized to the nucleus. Exposure of cells incubated with 7a and 7b to a 364 nm UV laser directed toward defined nuclear regions of interest resulted in localized adduct formation which could be visualized by immunofluorescence. Repair-proficient cells were able to remove the photoadducts, while repair-deficient cells were unable to repair the damage. The results indicated that the digoxigenin-TMP conjugate 7a and digoxigenin-DMA conjugate 7b can be used for studying the repair of laser localized DNA monoadducts and cross-links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.