Olive (Olea europaea Linn., Fam. Oleaceae) is commonly known as Zaytoon in Mediterranean region. Its fruits and oil are essential components of Mediterranean diets. Olive tree is a prevalent plant species and one of the important cultivated crops of Mediterranean region. Oleuropein is a phenolic constituents of olive, which, along with its related compounds, has been indicated to be majorly responsible for its beneficial effects. Oleuropein is a secoiridoid type of phenolic compound and consists of three structural subunits: hydroxytyrosol, elenolic acid, and a glucose molecule. It is also reported to be the chemotaxonomic marker of olive. The oleuropein is reported to possess a number of biological activities including action against dyslipidemia, antiobesity, antidiabetic, antioxidant, antiatherogenic, antihypertensive, antiinflammatory, and hepatoprotective actions. The scientific evidence supports the role of oleuropein as a potential agent against metabolic syndrome. The present review discusses chemistry of oleuropein along with potential role of oleuropein with reference to pathophysiology of metabolic syndrome.
The oldest remedies identified to mankind are herbal medicines. India is recognized worldwide for its Ayurvedic treatment. India has rich history of using many plants for medicinal purposes. Remedial plants are cooperating extremely dynamic position in customary drugs for the action of a variety of illness. However a key obstacle, which has hindered the promotion in use of alternative medicines in the developed countries, is no evidence of documentation and absence of stringent quality control measures. There is a demand for the evidence of every investigate effort execute on conventional remedies in the appearance of certification. The purpose of current review is to make accessible up-to-date information on, botany, morphology, ecological biodiversity, therapeutic uses, phytochemistry and pharmacological activities on diverse parts of Silybum marianum (L.) Gaertn (S. marianum). This review was assembled using technical literature from electronic search engine such as Springer link, Bio Med Central, Pub Med, Scopus, Science Direct, Scielo, Medline and Science domain. Supplementary texts were obtained from books, book chapters, dissertations, websites and other scientific publications. S. marianum a member of the Asteraceae family, is a tall herb with large prickly white veined green leaves and a reddish-purple flower that ends in sharp spines. It is native of the Mediterranean region and which has also spread in East Asia, Europe, Australia and America. Confident chemical constituents were exposed cognate as silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin, apigenin 7-O-β-(2″- O-α-rhamnosyl)galacturonide, kaempferol 3-O-α-rhamnoside-7-O-β-galacturonide, apigenin 7-O-β-glucuronide, apigenin 7-O-β-glucoside, apigenin 7-O-β-galactoside, kaempferol-3-O-α-rhamnoside, kaempferol, taxifolin and quercetin. The plant is exclusively used as anti-diabetic, hepatoprotective, hypocholesterolaemic, anti-hypertensive, anti-inflammatory, anti-cancer, and as an anti-oxidant. Seeds of the plant are also used as an anti-spasmodic, neuroprotective, anti-viral, immunomodulant, cardioprotective, demulcent and anti-haemorrhagic. The plant is also serves as a galactagogue, agent that induces milk secretion and used in the treatment of uterine disorders. The plant is employed in dissimilar conventional schemes of remedy in the cure of different illness.
Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, −7.8 kcal/mol and −7.6 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski’s rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.
Pelargonium graveolens (Geranium) is a source of the finest quality of fragrance and its essential oils are used as antibacterial, and antifungal agents. The aim of the current research is to determine chemical constituents in the essential oil of P. graveolens by GC-MS and evaluate its antidiabetic activity via α-glucosidase inhibition assay. The chemical composition of P. graveolens essential oil was determined by GC/MS and its antidiabetic activity was assessed through inhibition of α-glucosidase enzyme in in-vitro models. GC-MS analysis determines 36 chemical components in the essential oil of P. graveolens leaves, and citronellyl isovalerate (10.41 %), menthol (9.61 %), linalool (8.63 %), p-menthone (6.31 %), and geranyl tiglate (4.99 %) were recorded as major constituents. The essential oil of P. graveolens leaves showed concentration dependant inhibition of α-glucosidase enzyme ranging from 28.13±1.41 to 74.24±2.53 µg/mL for concentration ranging from 31.25 to 1000 µg/mL. The IC50 values for of P. graveolens and acarbose were found as 93.72±4.76 and 80.4±2.17 µg/mL, respectively against the α-glucosidase enzyme. The study finding explores the chemical components of P. graveolens growing in the Iraqi Kurdistan region and scientifically supported its possible use in diabetic patients for controlling postprandial hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.