Our statistical evaluation indicates that porphyrin in blood can be used as a reliable tumor marker. Fluorescence emission spectroscopy of blood components and statistical evaluations should be further investigated for a variety of tumors.
Objective:The aim was to evaluate the anti-diabetic and anti-hyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activities of its phytoconstituents using in vivo anti-diabetic model and in silico analysis respectively.Materials and Methods:The leaves of O. tenuiflorum were extracted with 60% ethanol, and the extract was used for further pharmacological screening. The acute toxicity of the extract was evaluated as per the guidelines set by the Organization for Economic Co-operation and Development, revised draft guidelines 423. The oral anti-diabetic activity of the hydroalcoholic extract of O. tenuiflorum (125, 250 and 500 mg/kg) was studied against streptozotocin (STZ) (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus. The animals were treated with the investigational plant extract and standard drug (glibenclamide) for 21 consecutive days and the effect of hydroalcoholic extract of O. tenuiflorum on blood glucose levels was measured at regular intervals. At the end of the study, blood samples were collected from all the animals for biochemical estimation, then the animals were sacrificed and the liver and kidney were collected for organ weight analysis. Prediction for pharmacological and toxicological properties of phytoconstituents of O. tenuiflorum was carried out using online web tools such as online pass prediction and lazar toxicity prediction.Results:The hydroalcoholic extract of O. tenuiflorum showed significant anti-diabetic and anti-hyperlipidemic activity at 250 and 500 mg/kg, and this effect was comparable with that of glibenclamide. Predicted biological activities of phytoconstituents of O. tenuiflorum showed presence of various pharmacological actions, which includes anti-diabetic and anti-hyperlipidemic activities. Prediction of toxicological properties of phytoconstituents of O. tenuiflorum did not show any major toxic effects.Conclusion:The hydroalcoholic extract of O. tenuiflorum showed significant anti-diabetic and anti-hyperlipidemic activity against STZ + nicotinamide induced diabetes mellitus in rats. Further studies are required to confirm the anti-diabetic and anti-hyperlipidemic activities of individual phytoconstituents of O. tenuiflorum.
Objective:To investigate the involvement of alpha adrenergic receptors in hypotension induced by cleistanthin A and cleistanthin B.Materials and Methods:Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus using a column chromatographic method and purified. Structures were confirmed by spectroscopic analysis. The compounds were prepared for molecular docking studies using Ligprep 2.3 module and Induced Fit Docking was carried out against α-1 adrenergic receptors using Glide. The ex vivo experiments were carried out on male Wistar rats. Under anaesthesia, the femoral vein and carotid artery were cannulated for drug administration and for monitoring the blood pressure, respectively. The effect of epinephrine, norepinephrine, acetylcholine, histamine and dopamine were recorded before and after the administration of cleistanthin A or cleistanthin B. The molecular docking studies showed favorable molecular interactions, glide score, energy and emodel.Result:Cleistanthins A and B per se reduced the mean blood pressure and the effect was dose dependent. Both the compounds reduced the effect of epinephrine, norepinephrine and α-1 receptor activity of dopamine. Cleistanthin B significantly increased the duration of action of acetylcholine on mean blood pressure.Conclusion:The molecular docking and ex vivo studies conclude that cleistanthin A and cleistanthin B have significant α-1 adrenergic receptor antagonist effect on the peripheral vascular system.
The multidrug resistance 1 (MDR1) gene product, P-glycoprotein (Pgp/p170) is a membrane protein, which acts as an ATP dependant effl ux pump that expels a wide variety of organic compounds including chemotherapeutic agents from the cell. Pgp over expression has been demonstrated to be linked with poor treatment outcome and poor prognosis in a number of malignant tumors. AgNORs is a simple, reliable and inexpensive method of evaluating the proliferative activity of a tumor. We have studied MDR1 expression and AgNORS in 41 cases of acute leukemia in children. In this study, AgNOR counts in patients with acute lymphoblastic leukemia (ALL) L2 subtype (FAB classification) were signifi cantly higher as compared to the ALL L1 subtype. Similarly, mean AgNOR count in the acute myeloid Leukemia (AML) M2 subtype was signifi cantly higher as compared to the ALL L1 subtype. However, there was no correlation between AgNOR and treatment outcome or between AgNOR counts and MDR1 expression in any of the subtypes of acute leukemia included in this series. In AML, MDR1 gene expression was found to be related to reduced remission induction rates and hence poorer prognosis. In ALL, our study has shown no difference in remission induction between MDR1 positive and MDR1 negative cases. This would suggest that factors other than MDR1 may be of relevance in Pediatric ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.