Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quality diagnostic specimens from nine pneumonic bighorn sheep in three populations and analyzed the bacterial populations present in bronchoalveolar lavage specimens of seven by using a culture-independent method (16S rRNA gene amplification and clone library analyses). Mycoplasma ovipneumoniae was detected as a predominant member of the pneumonic lung flora in lambs with early lesions of bronchopneumonia. Specific PCR tests then revealed the consistent presence of M. ovipneumoniae in the lungs of pneumonic bighorn sheep in this study, and M. ovipneumoniae was isolated from lung specimens of five of the animals. Retrospective application of M. ovipneumoniae PCR to DNA extracted from archived formalin-fixed, paraffin-embedded lung tissues of historical adult bighorn sheep necropsy specimens supported the association of this agent with bronchopneumonia (16/34 pneumonic versus 0/17 nonpneumonic sheep were PCR positive [P < 0.001]). Similarly, a very strong association was observed between the presence of one or more M. ovipneumoniae antibody-positive animals and the occurrence of current or recent historical bronchopneumonia problems (seropositive animals detected in 9/9 versus 0/9 pneumonic and nonpneumonic populations, respectively [P < 0.001]). M. ovipneumoniae is strongly associated with bronchopneumonia in free-ranging bighorn sheep and is a candidate primary etiologic agent for this disease.
Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.
The mechanism of immunosuppression induced by bovine herpesvirus 1 (BHV-1) was investigated by studying the effects of the virus on the expression of major histocompatibility complex (MHC) class I molecules. After infection with the virus, the expression of class I molecules was detected by flow cytometry and pulse-chase analysis. A selective downregulation of expression of class I molecules was seen in the infected cells, while the class II expression remained unaffected. The reduction in surface expression was evident as early as 8 hours postinfection, reaching significant levels by 12 hours. The downregulation was seen with a multiplicity of infection as low as 0.1. A modified live vaccine strain of BHV-1 also induced the downregulation of class I expression. Analysis of the viral proteins(s) involved in this downregulation with metabolic inhibitors (cycloheximide or phosphonoacetic acid), suggested that the immediate early and/or early proteins of the virus mediate this effect. Pulse-chase analysis revealed that the synthesis of the class I heavy chain, and the assembly/transport of class I molecules were affected by the virus infection. These results suggest that BHV-1 interferes with the molecular mechanisms involved in the synthesis, and assembly/transport of MHC-class I molecules. This interference with the class I antigen processing pathway might help the virus to evade the cytotoxic T-lymphocyte response of the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.