Anti-inflammatory phytocompounds from Crateva adansonii DC leaf extracts were identified by GCMS analysis and its anti-inflammatory potential was evaluated by in silico molecular docking study against inflammatory molecular targets. Three different (Aqueous, Methanol and Petroleum ether) dried leaf extracts of Crateva adansonii were obtained from soxhlet extraction method. Preliminary phytoconstituents analysis of three different leaf extracts of C. adansonii confirmed the presence of various major classes of bioactive phytoconstituents such as polyphenols (tannins and flavonoids), steroids, alkaloid, coumarin, carbohydrate and terpenoids. Among three leaf extracts, methanolic leaf extract possess highest total phenolic content of 77 ± 1.65 µg gallic acid equivalent (GAE)/g of dry weight of leaf extract, subsequently methanolic leaf extract also shows maximal in vitro antioxidant activity (DPPH scavenging activity) of 71.22 ± 1.32% among three different leaf extracts. GC–MS analysis of petroleum ether leaf extract revealed the presence of nine phytocompounds representing 95.43% peak area percentage, among nine identified phytocompounds three phytocompounds of C. adansonii possess anti-inflammatory property namely phytol, 1-Hexyl-2-Nitrohexane and 2-Isopropyl-5-Methylcyclohexyl 3-(1-(4-Chlorophenyl)-3-Oxobutyl)-Coumarin-4-Yl Carbonate were chosen for in silico molecular docking study against four inflammatory receptor targets (COX-2, TNFα, IL-1β and IL-6) and they shows less binding energy with highest docking score ranging from −15.9500 to 5.0869. The present study substantially indicated and proven that anti-inflammatory potential of phytocompounds from C. adansonii leaf extracts which can be exploited for commercial designing of novel anti-inflammatory drug to treat various inflammatory disorders.
Background Lupeol, a triterpene bioactive compound isolated from Indian traditional plant Crateva adansonii acted as promising and alternative anti-inflammatory agent to treatments of diseases related to inflammation. The inflammatory process in the body serves an important function in the control and repair of injury. However, it is self-perpetuating in number of disease conditions, which must be prevented and treated. Worldwide most prescribing NASID drug shows severe side effects. Whereas drug from natural origin shows dual inhibition of inflammatory and analgesic target protein with more efficacy and less side effects than NSAID drugs. Our study aims to isolate and screen the analgesic and anti-inflammatory potential of lupeol, a pentacyclic triterpenoid isolated from leaf extract of Crateva adansonii belongs to Capparaceae family commonly used Indian traditional medicine for treating inflammatory diseases. Results Methanol and chloroform leaf extracts (ME and CE) and lupeol fraction (LF) of plant Crateva adansonii is investigated through employing in vivo male Wistar albino rat model. Acute toxicity study of C. adansonii ME and CE leaf extracts reveals that no mortality and no behavioral changes in experimental animals up to 2 g/kg. So no lethal dose we consider two optimal doses 200 and 400 mg of plant leaf extracts for in vivo inflammatory and analgesic study. In vivo acute and chronic anti-inflammatory activity was carried out through carrageenan-induced rat paw edema and cotton pellet-induced granuloma models. LF (100 mg/kg, oral route) of Crateva adansonii evoked highest percentage of inflammation inhibition (50 and 33.96% respectively) in both in vivo acute and chronic inflammation model among all tested samples (ME and CE 200 mg and 400 mg/kg, oral route) including reference standard (10 mg/kg, oral route) indomethacin. Carrageenan-challenged experimental animals were screened for one inflammatory marker enzyme myeloperoxidase (MPO), inflammatory products such as Prostaglandrin E2 (PGE2), and eight different cytokines markers (TNFα, IL-6, IFN γ, IL-1α, IL-1β, MCP-1, Rantes, and MIP) associated with inflammation reveals that LF (100 mg/kg, oral route) of Crateva adansonii shows prominent anti-inflammatory activity than reference standard indomethacin (10 mg/kg, oral route) over all these biological tested parameters. In vivo analgesic assays such as hot plate assay and acetic acid-induced writhing assay revealed that LF (100 mg/kg, oral route) possesses significant analgesic activity (11.60 s and 69.05%) when compared with standard drug pentazocine(10 mg/kg, oral route). Finally, we made an in silico screening of lupeol against analgesic (nAChR) and anti-inflammatory (COX-2) target proteins reveals that lupeol possess highest binding affinity with nAChR and COX-2 target proteins (− 8.5 and − 9.0 Kcal/mol) over the reference standard pentazocine and indomethacin (− 7.0 and − 8.4 Kcal/mol) respectively. Conclusion The present study result provides a pharmacological evidences for analgesic and anti-inflammatory potential of lupeol isolated from Indian traditional plant Crateva adansonii act as a multi-target agent with immense anti-inflammatory potential targeting key molecules of inflammation such as MPO, PGE2, and eight pro-inflammatory cytokine markers. Outcome of present study is to find promising anti-inflammatory bioactive agents from the cheapest Indian traditional medicinal plant sources useful for pharmaceutical industries.
SARS CoV-2 causes a world pandemic disease called COVID-19. In the present study, natural phenol and flavonoid compounds from food sources are used to search for effective drug candidates for treating novel coronavirus 2019. Thirtyfive natural phenolic compounds were taken for our study. Four levels of in silico virtual screening (Drug likeliness, Docking study, ADME, and DFT analysis) was carried out to find effective drug candidate against SAR-CoV-2. 23 Compounds were shortlisted from 35 compounds by preliminary Drug likeliness screening carried out according to five different drug rules. A docking study of 23 compounds against three viral protein targets of SAR-CoV-2 reveals four best-docked compounds, such as Quercetin (CID 5280343), Rosmarinic acid (CID 5281792), Hesperidin (CID 72281), and Naringenin (CID 932). Finally, these four phenolic compounds were subjected to final in silico screening steps such as ADME and DFT analysis. These compounds were considered as the best drug candidate for SARS CoV- 2. These four selected phenolic compounds show better binding affinity with SARS-CoV-2 viral protein targets, which also possess excellent physicochemical and pharmacokinetic properties. Moreover, these compounds virtually present in every food substance, so nutritional supplements of these fruits and vegetables with these compounds act as best warriors to combat COVID-19. Further, in vivo analysis is needed to explore the molecular mechanism behind the inhibition of SAR-CoV-2 viral proteins with these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.