We present a novel graph-neural-network-based system to effectively represent large-scale 3D point clouds with the applications to autonomous driving. Many previous works studied the representations of 3D point clouds based on two approaches, voxelization, which causes discretization errors and learning, which is hard to capture huge variations in largescale scenarios. In this work, we combine voxelization and learning: we discretize the 3D space into voxels and propose novel graph inception networks to represent 3D points in each voxel. This combination makes the system avoid discretization errors and work for large-scale scenarios. The entire system for large-scale 3D point clouds acts like the blocked discrete cosine transform for 2D images; we thus call it the point cloud neural transform (PCT). We further apply the proposed PCT to represent real-time LiDAR sweeps produced by selfdriving cars and the PCT with graph inception networks significantly outperforms its competitors.
In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding-based kernel achieves the best performance. Furthermore, we present episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for VIN and GVIN. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scaleand outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.