Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.58 spatial resolution for the global land areas for a 15-yr period (1985-99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr 21 (from 60 000 to 85 000 km 3 yr 21 ), and simulated runoff ranges from 290 to 457 mm yr 21 (from 42 000 to 66 000 km 3 yr 21 ). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degreeday approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).
Abstract. FLUXNET comprises globally distributed eddy-covariance-based estimates of carbon fluxes between the biosphere and the atmosphere. Since eddy covariance flux towers have a relatively small footprint and are distributed unevenly across the world, upscaling the observations is necessary to obtain global-scale estimates of biosphere–atmosphere exchange. Based on cross-consistency checks with atmospheric inversions, sun-induced fluorescence (SIF) and dynamic global vegetation models (DGVMs), here we provide a systematic assessment of the latest upscaling efforts for gross primary production (GPP) and net ecosystem exchange (NEE) of the FLUXCOM initiative, where different machine learning methods, forcing data sets and sets of predictor variables were employed. Spatial patterns of mean GPP are consistent across FLUXCOM and DGVM ensembles (R2>0.94 at 1∘ spatial resolution) while the majority of DGVMs show, for 70 % of the land surface, values outside the FLUXCOM range. Global mean GPP magnitudes for 2008–2010 from FLUXCOM members vary within 106 and 130 PgC yr−1 with the largest uncertainty in the tropics. Seasonal variations in independent SIF estimates agree better with FLUXCOM GPP (mean global pixel-wise R2∼0.75) than with GPP from DGVMs (mean global pixel-wise R2∼0.6). Seasonal variations in FLUXCOM NEE show good consistency with atmospheric inversion-based net land carbon fluxes, particularly for temperate and boreal regions (R2>0.92). Interannual variability of global NEE in FLUXCOM is underestimated compared to inversions and DGVMs. The FLUXCOM version which also uses meteorological inputs shows a strong co-variation in interannual patterns with inversions (R2=0.87 for 2001–2010). Mean regional NEE from FLUXCOM shows larger uptake than inversion and DGVM-based estimates, particularly in the tropics with discrepancies of up to several hundred grammes of carbon per square metre per year. These discrepancies can only partly be reconciled by carbon loss pathways that are implicit in inversions but not captured by the flux tower measurements such as carbon emissions from fires and water bodies. We hypothesize that a combination of systematic biases in the underlying eddy covariance data, in particular in tall tropical forests, and a lack of site history effects on NEE in FLUXCOM are likely responsible for the too strong tropical carbon sink estimated by FLUXCOM. Furthermore, as FLUXCOM does not account for CO2 fertilization effects, carbon flux trends are not realistic. Overall, current FLUXCOM estimates of mean annual and seasonal cycles of GPP as well as seasonal NEE variations provide useful constraints of global carbon cycling, while interannual variability patterns from FLUXCOM are valuable but require cautious interpretation. Exploring the diversity of Earth observation data and of machine learning concepts along with improved quality and quantity of flux tower measurements will facilitate further improvements of the FLUXCOM approach overall.
Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For RS and RS + METEO setups respectively, we estimate 2001–2013 global (±1 s.d.) net radiation as 75.49 ± 1.39 W m −2 and 77.52 ± 2.43 W m −2 , sensible heat as 32.39 ± 4.17 W m −2 and 35.58 ± 4.75 W m −2 , and latent heat flux as 39.14 ± 6.60 W m −2 and 39.49 ± 4.51 W m −2 (as evapotranspiration, 75.6 ± 9.8 × 10 3 km 3 yr −1 and 76 ± 6.8 × 10 3 km 3 yr −1 ). FLUXCOM products are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations.
Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively few studies have attempted to simulate the impacts of anthropogenic activities on the terrestrial water cycle using the framework of LSMs. From the comparison of simulated terrestrial water storage with the Gravity Recovery and Climate Experiment (GRACE) satellite observations it is found that a process-based LSM, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), outperforms the bucket-model-based GHM called H08 in simulating hydrologic variables, particularly in water-limited regions. Therefore, the water regulation modules of H08 are incorporated into MATSIRO. Further, a new irrigation scheme based on the soil moisture deficit is developed. Incorporation of anthropogenic water regulation modules significantly improves river discharge simulation in the heavily regulated global river basins. Simulated irrigation water withdrawal for the year 2000 (2462 km 3 yr 21 ) agrees well with the estimates provided by the Food and Agriculture Organization (FAO). Results indicate that irrigation changes surface energy balance, causing a maximum increase of ;50 W m 22 in latent heat flux averaged over June-August. Moreover, unsustainable anthropogenic water use in 2000 is estimated to be ;450 km 3 yr 21 , which corresponds well with documented records of groundwater overdraft, representing an encouraging improvement over the previous modeling studies. Globally, unsustainable water use accounts for ;40% of blue water used for irrigation. The representation of anthropogenic activities in MATSIRO makes the model a suitable tool for assessing potential anthropogenic impacts on global water resources and hydrology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.