The unique structure of green leaves endows them with an extremely high light‐harvesting efficiency. In this work, green leaves are applied as biotemplates to synthesize morph‐TiO2. The structural features favorable for light harvesting from the macro‐ to the nanoscale are replicated in morph‐TiO2 through a two‐step infiltration process and the N contained in the original leaves is self‐doped into the resulting samples. The absorbance intensities within the visible‐light range of morph‐TiO2 derived from different leaves increase by 103–258% and the band‐gap‐absorption onsets at the edge of the UV and visible‐light range show a red‐shift of 25–100 nm compared to those in TiO2 without the template. The photocatalytic activity of morph‐TiO2 is also improved, as proven by an electron paramagnetic resonance (EPR) study and degradation of rhodamine dye under irradiation with UV and visible light. The present work, as a new strategy, is of far‐reaching significance in learning from nature, driving us to make full use of the most‐abundant resources and structure‐introduced functions endowed by nature, opening up possibilities for extensive study of the physical and chemical properties of morph‐structured oxides and extending their potential for use in applications such as solar cells, photocatalysts, photoelectrical devices, and photoinduced sensors.
Biomorphic cerias were produced through mineralizing plantleaf templates (camphor and common oleander) with a cerium nitrate precursor. They were mesoporous while inheriting the species-dependent macrofeatures of plant-leaf templates, like macropores, channels, and microfibrous clusters, to have a meso/macroporous hierarchy. Surface oxygen activity was enhanced for the biomorphic cerias, as was revealed by temperature-programmed reduction measurements, suggesting their potentials in mid-temperature (3001-6001C) applications of oxygen storage, catalysis, gas sensing, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.