Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.
Being one of the notorious weed P. hysterophorus has invaded almost every part India and is the lead cause of skin allergies and severe dermatitis among farmers and rural population. It is an invasive obnoxious weed capable of surviving extreme environmental conditions and various parts of this plant are reported to cause severe contact allergies in humans due to the presence of high concentrations of toxic sesquiterpene lactones viz. parthenin. It can stimulate numerous cellular and immune responses that may translate into Oxidative stress, allergies, and inflammation. The effect of P. hysterophorus flower extract was evaluated on cell viability, oxidative stress and inflammation in A549 lung cancer cell line by spectrophotometric and reverse transcriptase-polymerase chain reaction methods. Schrodinger software based docking was performed for possible interactions studies. The A549 cells treated with P. hysterophorus flower extract favors increase in cell viability, reactive oxygen species generation. The mRNA expression of proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1β was significantly increased whereas no change in IL-18 expression was observed. Significant increase in protein expression of NF-κB was observed, suggesting the role of NF-κB signalling in allergic responses. The docking studies demonstrated the potential interaction between Parthenin and NF-κB/IL-1β/ IL-18 suggesting their activation leading to inflammation. The current study emphasize that P. hysterophorus mediates oxidative stress, and inflammatory process via alterations in expression of proinflammatory cytokines such as IL-1β, IFN-γ through NF-κB activation which was also confirmed in docking studies. Cellular and molecular mechanisms involved in pathogenesis of allergic/chronic inflammation and severe dermatitis need to be further investigated to identify specific binding partners responsible for severe inflammation which can provide some leads in developing effective targets against severe dermatitis and skin allergies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.