Organic sodium-ion batteries (SIBs) are potential alternatives of current commercial inorganic lithium-ion batteries for portable electronics (especially wearable electronics) because of their low cost and flexibility, making them possible to meet the future flexible and large-scale requirements. However, only a few organic SIBs have been reported so far, and most of them either were tested in a very slow rate or suffered significant performance degradation when cycled under high rate. Here, we are focusing on the molecular design for improving the battery performance and addressing the current challenge of fast-charge and -discharge. Through reasonable molecular design strategy, we demonstrate that the extension of the π-conjugated system is an efficient way to improve the high rate performance, leading to much enhanced capacity and cyclability with full recovery even after cycled under current density as high as 10 A g(-1).
AIMS:The purpose of this study is to investigate the effect of improved periodontal health on glycemic control in type 2 diabetes mellitus (type 2 DM) patients who have generalized periodontitis.MATERIALS AND METHODS:A total of 45 type 2 DM patients with generalized periodontitis were selected for the study. The selected patients were randomly assigned to three groups (groups A, B, and C) comprising 15 patients each: • Group A received treatment with scaling and root planing only. • Group B received treatment with scaling and root planing followed by systemic doxycycline. • Group C received no treatment (control group). The periodontal parameters recorded included plaque index, gingival index, probing pocket depth, and clinical attachment level. These parameters were recorded at baseline (day zero), at 1 month, and at the end of 3 months. The following metabolic parameters were recorded: fasting blood glucose (FBG), postprandial blood glucose (PPBG), and glycated hemoglobin. These were recorded at baseline (day zero) and at the end of 3 months.STATISTICAL ANALYSIS:All the parameters were subjected to repeated-measures ANOVA and Scheffe's post hoc test.RESULTS:A statistically significant effect could be demonstrated for periodontal parameters for both group A and group B (treatment groups). Glycated hemoglobin values showed statistically significant decrease in treatment groups compared to the control group, with group B showing more significant decrease than group A.CONCLUSIONS:The results of this study showed that nonsurgical periodontal treatment is associated with improved glycemic control in type 2 DM patients.
Thin layer chromatography was performed on Merck TLC plates (60F254, 0.2 mm) using an appropriate solvent system. The chromatograms were visualized under UV light. Most of the products crystallized in ethanol. All solvents and liquid reagents were dried with appropriate reagents before use. Commercially available 2-furfural, Maldrum's acid, diethylamines, polyethyleneimine (branched), were purchased from Sigma Aldrich. Laboratory grade solvents like ethanol, THF, DCM and material polycarbonate were used without any pre-treatment.
An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.
As significant advancements in technology focused on Organ-on-a-chip continue, it is feasible to consider the future of Body-on-a-chip technology. With serious work being done to realize functioning artificial livers, kidneys, hearts, and lungs on chips, the next step is not only to interconnect these organs but also to consider the integration of stem cell technology to create interconnected patient-specific organs. Such a patient-specific Body-on-a-chip requires a sophisticated set of tools for micropattering cell cultures in 3D to create interconnected tissue-like organ structures. This review discusses advanced methods of the past two years in on-Chip organs, the complex 3D patterning of cultures and state-of-the-art scaffolding, and discusses some of the most relevant advancements in human-induced pluripotent stem cell (hiPSC) research applied to these organs and scaffolds for the future of a patient-specific Body-on-a-chip. We anticipate that such a technology would have a wide area of application, primarily benefiting drug development, chemical safety testing, and disease modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.