Massive levels of integration are making modern multicore chips all pervasive in several domains. High performance, robustness, and energy-efficiency are crucial for the widespread adoption of such platforms. Networks-on-Chip (NoCs) have emerged as communication backbones to enable a high degree of integration in multicore Systems-on-Chip (SoCs). Despite their advantages, an important performance limitation in traditional NoCs arises from planar metal interconnect-based multihop links with high latency and power consumption. This limitation can be addressed by drawing inspiration from the evolution of natural complex networks, which offer great performance-cost trade-offs. Analogous with many natural complex systems, future multicore chips are expected to be hierarchical and heterogeneous in nature as well. In this article we undertake a detailed performance evaluation for hierarchical small-world NoC architectures where the long-range communications links are established through the millimeter-wave wireless communication channels. Through architecture-space exploration in conjunction with novel power-efficient on-chip wireless link design, we demonstrate that it is possible to improve performance of conventional NoC architectures significantly without incurring high area overhead.
This paper presents a high-efficiency 60-GHz on-off keying (OOK) transmitter (TX) designed for wireless network-on-chip applications. Aiming at an intra-chip communication distance of 20 mm, the TX consists of a drive amplifier (DA), a high-speed OOK modulator, and a transformer-coupled voltage-controlled oscillator. For high efficiency, a common-source topology with a drain-to-gate neutralization technique is chosen for the DA. A detailed mathematical design methodology is derived for the neutralization technique. The bulk-driven OOK modulator employs a novel dual feedthrough cancellation technique, resulting in a 30-dB on-off ratio. Fabricated in a 65-nm bulk CMOS process, the TX consumes only 19 mW from a 1-V supply, and occupies an active area of 0.077 mm . A maximum modulation data rate of 16 Gb/s with 0.75-dBm output power is demonstrated through measurements, which translates to a bit-energy efficiency of 1.2 pJ/bit.
Index Terms-Bulkdriven, CMOS, drive amplifier (DA), low power, millimeter wave, modulator, neutralization, on-off keying (OOK), transmitter (TX), voltage-controlled oscillator (VCO), wireless network-on-chip (WiNoC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.