Human activities such as vegetation removal and overgrazing that result in changes in land cover have substantial impacts on ecosystem processes, including the infiltration of water. Different land cover types (microsites) vary in their capacity to conduct water, but the extent to which infiltration is affected by different herbivores or microsites is largely unknown. We examined the effects of grazing and microsite on infiltration in two extensive woodland communities in semiarid eastern Australia that vary in current condition. Poor condition sites had lower steady-state infiltration under ponding than either average or good condition sites, and this effect was consistent across the two communities. Ponded infiltration and sorptivity beneath grasses, shrubs or trees were about twice that on bare soil, and this corresponded to greater indices of macroporosity. Structural equation modelling showed that shrubs, trees, and grasses had strong positive effects on sorptivity and steady-state infiltration under ponding, whereas grazing had generally negative effects. The suppressive effects of grazing on soil hydrological processes were mainly due to cattle grazing. The positive effects of grasses, shrubs, and trees on hydrology were twice as strong as the negative effects of grazing. Our results also suggest that prolonged overgrazing that leads to reductions in grass cover is likely to have a synergistic reduction in hydrological function in these woodlands by reducing the cover of highly conductive patches and by reducing the extent of macropores.
Global change is expected to reduce the provision of multiple ecosystem services in drylands, the largest biome on Earth. Understanding the relative importance of climate change and overgrazing on ecosystems services is critical for predicting the effects of global change on ecosystem well‐being. We generated a system‐level understanding of the effects of climate (aridity intensity) and land use intensification (herbivore grazing intensity) on four regulating ecosystem services (C‐storage, N‐availability and P‐availability, and organic matter decomposition) and one provisioning service (plant production) in wooded drylands from eastern Australia. Climate change and grazing intensity had different effects on multiple ecosystem services. Increasing aridity from 0·19 (dry subhumid) to 0·63 (arid) had consistent suppressive effects on C‐storage, N‐availability, decomposition and plant biomass services, but not on P‐availability. The magnitude of these suppressive effects was greater than any effects due to grazing. All sites showed evidence of kangaroo grazing, but the heaviest grazing was due to cattle (dung: range 0–4545 kg ha−1; mean 142 kg ha−1). Any effects of grazing on ecosystem services were herbivore specific and ranged from positive to neutral or negative. Sheep, and to a lesser extent cattle, were associated with greater N‐availability. Rabbits, however, had a greater effect on P‐availability than aridity. Our study suggests that increases in livestock grazing may fail to sustain ecosystem services because of the generally stronger negative effect of increasing aridity on most ecosystem services in our model dryland. These services are likely therefore to decline with global increases in aridity. Copyright © 2017 John Wiley & Sons, Ltd.
In this paper, we attempted to determine the most stable or unstable regions of vegetation cover in Mongolia and their spatio-temporal dynamics using Terra/MODIS Normalized Difference Vegetation Index (NDVI) dataset, which had a 250-m spatial resolution and comprised 6 periods of 16-day composited temporal resolution data (from 10 June to 13 September) for summer seasons from 2000 to 2012. We also used precipitation data as well as biomass data from 12 meteorological stations located in 4 largest natural zones of Mongolia. Our study showed that taiga and forest steppe zones had relatively stable vegetation cover because of forest characteristics and relatively high precipitation. The highest coefficient of variation (CV) of vegetation cover occurred frequently in the steppe and desert steppe zones, mainly depending on variation of precipitation. Our results showed that spatial and temporal variability in vegetation cover (NDVI or plant biomass) of Mongolia was highly dependent on the amount, distribution and CV of precipitation. This suggests that the lowest inter-annual CV of NDVI can occur during wet periods of growing season or in high precipitation regions, while the highest inter-annual CV of NDVI can occur during dry periods and in low precipitation regions. Although the desert zone received less precipitation than other natural zones of the country, it had relatively low variation compared to the steppe and desert steppe, which could be attributed to the very sparse vegetation in the desert.
Orchidaceae is a diverse, globally important plant family with high conservation assessment and prioritization requirements. The checklist of Orchidaceae in Mongolia was updated based on herbarium materials, literature, and field observations. Mongolian orchids were revised as comprising 26 taxa belonging to 14 genera with major updates were conducted on Herminium and Epipactis. In particular, H. alaschanicum, previously noted in the Alashan Gobi region, was added to the flora of Mongolia based on literature and type specimens. Epipactis helleborine and E. palustris were excluded from the Mongolian flora owing to the absence of herbarium specimens and wild collection from Mongolia. Assessment of all orchid species at the national level resulted in 1, 4, 7, 11, and 2 species as critically endangered (CR), endangered (EN), vulnerable (VU), near threatened (NT), and data deficient (DD), respectively, according to IUCN criteria. Species richness and conservation gap analyses of 970 georeferenced orchid records based on 0.5° × 0.5° grid cells across 16 phytogeographical regions of Mongolia, showed that four phytogeographical regions, Khangai, Khuvgul, Khentii and Mongolian Dauria, have a high number of orchids. Regrettably, most orchid-rich locations in Mongolia are not fully within protected areas, highlighting the need for protection management updates. Based on herbarium collections, we prepared grid distribution maps of the 26 taxa using 40 × 40 km2 grids. Photographs of 18 taxa taken during fieldwork were included, providing valuable information on species morphology and typical habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.