The effect of gold nanoparticles (GNPs) synthesized in marine algae has been described in the context of skin, where they have shown potential benefit. Ecklonia stolonifera (ES) is a brown algae that belongs to the Laminariaceae family, and is widely used as a component of food and medicine due to its biological activities. However, the role of GNPs underlying cellular senescence in the protection of Ecklonia stolonifera gold nanoparticles (ES-GNPs) against UVA irradiation is less well known. Here, we investigate the antisenescence effect of ES-GNPs and the underlying mechanism in UVA-irradiated human dermal fibroblasts (HDFs). The DPPH and ABTS radical scavenging activity of ES extracts was analyzed. These analyses showed that ES extract has potent antioxidant properties. The facile and optimum synthesis of ES-GNPs was established using UV-vis spectra. The surface morphology and crystallinity of ES-GNPs were demonstrated using high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). ES-GNPs presented excellent photocatalytic activity, as shown by the photo-degradation of methylene blue and rhodamine B. A cellular senescence model was established by irradiating HDFs with UVA. UVA-irradiated HDFs exhibited increased expression of senescence-associated β-galactosidase (SA-β-galactosidase). However, pretreatment with ES-GNPs resulted in reduced SA-β-galactosidase activity in UVA-irradiated HDFs. Intracellular ROS levels and G1 arrest in UVA-irradiated HDFs were checked against the background of ES-GNP treatment to investigate the antisenescence effects of ES-GNPs. The results showed that ES-GNPs significantly inhibit UVA-induced ROS levels and G1 arrest. Importantly, ES-GNPs significantly downregulated the transcription and translation of MMP (matrix metalloproteinases)-1/-3, which regulate cellular senescence in UVA-irradiated HDFs. These findings indicate that our optimal ES-GNPs exerted an antisenescence effect on UVA-irradiated HDFs by inhibiting MMP-1/-3 expression. Collectively, we posit that ES-GNPs may potentially be used to treat photoaging of the skin.
Here, Au nanostructure (AuNS) biosynthesis was mediated through ethanolic extract of Plocamium telfairiae (PT) without the use of stabilizers or surfactants. PT-functionalized AuNSs (PT-AuNSs) were analyzed using ultraviolet–visible spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and Fourier-transform infrared spectroscopy. Stable monodisperse PT-AuNSs were synthesized, with a mean size of 15.36 ± 0.10 nm and zeta potential of −35.85 ± 1.36 mV. Moreover, biosynthetic AuNPs with a face-centered structure of PT-AuNS exhibited crystalline characteristics. In addition, many functional groups playing important roles in the biological reduction of PT extracts were adsorbed on the surface of PT-AuNSs. Furthermore, the effects of PT-AuNSs on adipogenesis in immature adipocytes were investigated. PT-AuNSs reduced morphological changes, lowered triglyceride content, and increased lipid accumulation by approximately 78.6% in immature adipocytes compared with the values in mature adipocytes (MDI-induced). PT-AuNS suppressed lipid accumulation by downregulating the transcript and protein expression of C/EBPα, PPARγ, SREBP 1, FAS, and aP2. Finally, PT-AuNS induced the transcript and protein expression of UCP1, PRDM16, and PGC1a, thereby increasing mitochondrial biogenesis in mature adipocytes and effectively inducing brown adipogenesis. In this study, the biosynthesized PT-AuNS was used as a potential therapeutic candidate because it conferred a potent anti-lipogenic effect. As a result, it can be used in various scientific fields such as medicine and the environment.
The mechanism of white adipose tissue browning is not well understood; however, naturally occurring compounds are known to play a positive role. The effects of cucurbitacins B, E, and I on the browning of mature white adipocytes were investigated. First, the cell viability exhibited by cucurbitacins B, E, and I in pre- and mature adipocytes was verified. Cucurbitacins B, E, and I had no effect on cell viability in pre- and mature adipocytes at concentrations up to 300 nM. To investigate the characteristics of representative beige adipocytes, the formation and morphology of cucurbitacin B, E, and I lipid droplets were verified. The total lipid droplet surface area, maximum Feret diameter, and total Nile red staining intensity of cucurbitacin B-, E-, and I-treated adipocytes were lower than those of mature white adipocytes. Furthermore, treatment of white mature adipocytes with cucurbitacin B, E, and I led to the formation of several small lipid droplets that are readily available for energy expenditure. We evaluated the effect of cucurbitacins B, E, and I on the expression of representative browning markers UCP1, PGC1a, and PRDM16, which participate in the browning of white adipose tissue. Cucurbitacins B, E, and I increased the mRNA and protein expression levels of UCP1, PGC1a, and PRDM16 in a concentration-dependent manner. To promote energy consumption by beige adipocytes, active mitochondrial biogenesis is essential. Next, we investigated the effects of cucurbitacin B, E, and I on mitochondrial biogenesis in mature adipocytes. Mitochondrial mass increased when mature adipocytes were treated with cucurbitacin B, E, and I. The degree of cucurbitacin B-, E- and I-induced transformation of white adipocytes into beige adipocytes was in the order of Cu E > Cu B > Cu I. To verify the effect of phospholipase D2 on the browning of white adipocytes, CAY10594—a PLD2 pharmacological inhibitor, and a knockdown system were used. PLD2 inhibition and knockdown improved the expression levels of UCP1, PGC1a, and PRDM16. In addition, PLD2 inhibition and knockdown in mature white adipocytes promoted mitochondrial biosynthesis. The effect of PLD2 inhibition and knockdown on promoting browning of white adipocytes significantly increased when Cu B, Cu E, and Cu I were co-treated. These data indicate that mature white adipocytes’ beige properties were induced by cucurbitacins B, E, and I. These effects became more potent by the inhibition of PLD2. These findings provide a model for determining anti-obesity agents that induce browning and increase energy expenditure in mature white adipocytes.
This study investigated the anti-obesity effects of Cucumis melo var. gaettongchamoe (CG) in mice fed a high-fat diet (HFD). The mice received CG water extract (CGWE) treatment for 8 weeks, and changes in body weight and serum lipid levels were analyzed. The HFD + vehicle group showed a significant increase in body weight compared to the control group, while the HFD + CGWE and HFD + positive (orlistat) groups exhibited reduced body weight. Lipid profile analysis revealed lower levels of total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein cholesterol in the HFD + CGWE group compared to the HFD + vehicle group. The HFD + vehicle group had increased abdominal fat weight and fat content, whereas both HFD + CGWE groups showed significant reductions in abdominal fat content and adipocyte size. Additionally, CGWE administration downregulated mRNA expression of key proteins involved in neutral lipid metabolism. CGWE also promoted hepatic lipolysis, reducing lipid droplet accumulation in hepatic tissue and altering neutral lipid metabolism protein expression. Furthermore, CGWE treatment reduced inflammatory mediators and suppressed the activation of the mitogen-activated protein kinase pathway in hepatic tissue. In conclusion, CGWE shows promise as a therapeutic intervention for obesity and associated metabolic dysregulation, including alterations in body weight, serum lipid profiles, adipose tissue accumulation, hepatic lipolysis, and the inflammatory response. CGWE may serve as a potential natural anti-obesity agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.