We devised a method to measure the virtual magnetic field induced by Rashba effect in ferromagnetic metal layer. Transverse Rashba magnetic field makes the magnetization direction tilted out of the easy axis, which could be detected by the change in anomalous hall resistances. Through a specified measurement of the second harmonics of the hall resistance, the Rashba field could be obtained with high sensitivity even at low current regime. The results are compared with the prior reports based on the measurement of the transverse field required for the nucleation of reversed domain.
Despite the complexity and diversity of nature, there exists universality in the form of critical scaling laws among various dissimilar systems and processes such as stock markets, earthquakes, crackling noise, lung inflation and vortices in superconductors. This universality is mainly independent of the microscopic details, depending only on the symmetry and dimension of the system. Exploring how universality is affected by the system dimensions is an important unresolved problem. Here we demonstrate experimentally that universality persists even at a dimensionality crossover in ferromagnetic nanowires. As the wire width decreases, the magnetic domain wall dynamics changes from elastic creep in two dimensions to a particle-like stochastic behaviour in one dimension. Applying finite-size scaling, we find that all our experimental data in one and two dimensions (including the crossover regime) collapse onto a single curve, signalling universality at the criticality transition. The crossover to the one-dimensional regime occurs at a few hundred nanometres, corresponding to the integration scale for modern nanodevices.
Healable conductive materials have received considerable attention. However, their practical applications are impeded by low electrical conductivity and irreversible degradation after breaking/healing cycles. Here we report a highly conductive completely reversible electron tunneling-assisted percolation network of silver nanosatellite particles for putty-like moldable and healable nanocomposites. The densely and uniformly distributed silver nanosatellite particles with a bimodal size distribution are generated by the radical and reactive oxygen species-mediated vigorous etching and reduction reaction of silver flakes using tetrahydrofuran peroxide in a silicone rubber matrix. The close work function match between silicone and silver enables electron tunneling between nanosatellite particles, increasing electrical conductivity by~5 orders of magnitude (1.02×10 3 Scm −1) without coalescence of fillers. This results in~100% electrical healing efficiency after 1000 breaking/healing cycles and stability under water immersion and 6-month exposure to ambient air. The highly conductive moldable nanocomposite may find applications in improvising and healing electrical parts.
Materials showing reversible resistance switching between high-resistance state and low-resistance state at room temperature are attractive for today’s semiconductor technology. In this letter, the reproducible hysteresis and resistive switching characteristics of metal-CuxO-metal (M-CuxO-M) heterostructures driven by low voltages are demonstrated. The fabrication of the M-CuxO-M heterostructures is fully compatible with the standard complementary metal-oxide semiconductor process. The hysteresis and resistive switching behavior are discussed. The good retention characteristics are exhibited in the M-CuxO-M heterostructures by the accurate controlling of the preparation parameters.
We investigated resistance switching in top-electrode/NiO∕Pt structures where the top electrode was Au, Pt, Ti, or Al. For Pt∕NiO∕Pt and Au∕NiO∕Pt structures with ohmic contacts, the effective electric field inside the film was high enough to induce trapping or detrapping at defect states and thus resistance switching. For a Ti∕NiO∕Pt structure with well-defined Schottky contact at Ti∕NiO interface accompanied by an appreciable voltage drop, the effective electric field inside the NiO film was not enough to induce resistance switching. For an Al∕NiO∕Pt structure with a low Schottky barrier at the Al∕NiO interface, resistance switching could be induced at a higher voltage since the voltage drop at the Al∕NiO interface was not negligible but small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.