Membrane proteins play key roles in the development and progression of cancer. We have studied differentially expressed membrane proteins in glioblastoma multiforme (GBM), the most common and aggressive type of primary brain tumor, by high resolution LC-MS/MS mass spectrometry and quantitation by iTRAQ. A total of 1834 membrane proteins were identified with high confidence, of which 356 proteins were found to be altered by 2-fold change or more (198 up-and 158 down-regulated); 56% of them are known membrane proteins associated with major cellular processes. Mass spectrometry results were confirmed for representative proteins on individual specimens by immunohistochemistry. On mapping of the differentially expressed proteins to cellular pathways and functional networks, we notably observed many calciumbinding proteins to be altered, implicating deregulation of calcium signaling and homeostasis in GBM, a pathway also found to be enriched in the report (
The generation of reactive oxygen species and mitochondrial dysfunction has been implicated in doxorubicin (DOX)-induced cardiotoxicity. The aim of the present study was to determine whether Spirulina, a blue-green algae, could serve as a cardioprotective agent during DOX treatment in a mouse model. Mice were treated with DOX (4 mg/kg bw, intraperitoneally), weekly, for 4 weeks. Spirulina was administered orally for 3 days twice daily, then for 7 weeks along with the four equal injections of DOX. Cardiotoxicity was assessed, at 3 weeks after the end of the DOX-treatment period, by mortality, volume of ascites, liver congestion, oxidative stress and ultrastructural changes of heart tissue. The DOX-treated animals showed higher mortality (53%) and more ascites. Myocardial damage, as assessed by ultrastructural changes, showed loss of myofibrils, cytoplasmic vacuolization and mitochondrial swelling. Myocardial superoxide dismutase and glutathione peroxidase activities were decreased and lipid peroxidation was increased. Pretreatment with Spirulina significantly protected the mice from DOX-induced cardiotoxic effects as evidenced from lower mortality (26%), less ascites, lower levels of lipid peroxidation, normalization of antioxidant enzymes and ultrastructural studies showing minimal damage to the heart. In vitro cytotoxic studies using ovarian cancer cells demonstrated that Spirulina did not compromise the anti-tumor activity of doxorubicin. These results suggest that Spirulina has a protective effect against cardiotoxicity induced by DOX and it may, therefore, improve the therapeutic index of DOX.
Fifty-six patients with cerebral zygomycosis (mucormycosis) were seen during the period 1971-2001 in two tertiary care hospitals located in south India with tropical climate and catering to neurological diseases. Forty-four patients had rhinocerebral and twelve patients had isolated central nervous system (CNS) zygomycosis. Of these, ten were culture proven (Rhizopus oryzae in eight and Mucor in two); 30 were diagnosed as probable and 16 were diagnosed possible; mixed infections were seen in three patients. Diabetes mellitus was the predisposing condition in a majority (31/44) of patients with the rhinocerebral form of zygomycosis. The tissue obtained at biopsy/autopsy in either form showed necrotic/infarcted tissue with neutrophilic infiltration with broad non-septate hyphae showing irregular branching. The outcome was poor despite surgical excision and antifungal therapy. The high concentration of spores in a mouldy environment, the bird population and improper disposal of hospital waste may facilitate healthy hosts presenting with primary CNS disease.
Glioblastomas (GBMs) are the most common and lethal primary tumors of the central nervous system with high level of recurrence despite aggressive therapy. Tumor-associated proteins/peptides may appear in the plasma of these patients as a result of disruption of the blood-brain barrier in them, raising the scope for development of plasma-based tests for diagnosis and monitoring the disease. With this objective, we analyzed the levels of proteins present in the plasma from GBM patients using an iTRAQ based LC-MS/MS approach. Analysis with pooled plasma specimens from the patient and healthy control samples revealed high confidence identification of 296 proteins, of which 61 exhibited a fold-change ≥1.5 in the patient group. Forty-eight of them contained signal sequence. A majority have been reported in the differentially expressed transcript or protein profile of GBM tissues; 6 have been previously studied as plasma biomarkers for GBM and 16 for other types of cancers. Altered levels of three representative proteins–ferritin light chain (FTL), S100A9, and carnosinase 1 (CNDP1)–were verified by ELISA in a test set of ten individual plasma specimens. FTL is an inflammation marker also implicated in cancer, S100A9 is an important member of the Ca2+ signaling cascade reported to be altered in GBM tissue, and CNDP1 has been reported for its role in the regulation of the levels of carnosine, implicated as a potential drug for GBM. These and other proteins in the dataset may form useful starting points for further clinical investigations for the development of plasma-based biomarker panels for GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.