BackgroundWound healing is a natural process that enables tissue repair after an injury. To shorten its duration and minimize associated complications, wounds are treated with medications. Currently there is a growing interest in the use of alternative wound dressing agents such as plant extracts. One plant used traditionally in wound treatment is Pupalia lappacea. In view of its use in wound care, we investigated the wound healing activities of 80% methanolic leave extract of Pupalia lappacea using excision, incision and dead space wound models. Also its effects on three common wound contaminants were investigated.MethodsExcision wounds were created, contaminated with microbes and treated with ointments (10% and 20% w/w) prepared from Pupalia lappacea. Incision and dead space wounds were also created in rats which were subsequently dosed orally with the extract. The wound healing activities of Pupalia lappacea ointment on excision wound was assessed by rates of wound contraction and epithelialization as well as its antibacterial effects. The effects of Pupalia lappacea on incision and dead-space wounds were determined by the wound breaking strengths and weights of the granuloma tissues formed, respectively.ResultsPupalia. lappacea ointments significantly (p < 0.05) accelerated wound healing with 20% ointment having the highest percentage wound contraction and rate of epithelialization. At 4, 7 and 14 days post treatment, mean total viable bacterial count of excision wounds of the extract treated groups were significantly (p < 0.05) lower compared against the control. Wound breaking strengths and weights of granuloma tissues formed in the extract treated groups were significantly (p < 0.05) higher than those of the control group. The minimum inhibitory concentration values obtained for the Pupalia lappacea extract against Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were 9 mg/ml, 4 mg/ml and 3 mg/ml, respectively, while the corresponding minimum bactericidal concentrations were 10 mg/ml, 8 mg/ml and 7 mg/ml.ConclusionThe results obtained showed that Pupalia. lappacea has good wound healing and antibacterial activities. These findings validate the use of this plant in traditional medicine for treatment of wounds.
Problem statement: Phyllanthus niruri is widely used in many parts of the world to manage a wide range of diseases. As part of efforts to elucidate its pharmacological activities and hence medicinal potential, we studied the wound healing and antiulcer properties of extract of the aerial parts using experimentally-created wounds and ulcers in rodents. Approach: Wound healing effect was assessed using excision and dead space wound models while antiulcer activity was evaluated using indomethacin-, ethanol acid-and cold-restraint stress-induced ulcer models. Results: The extract (5,10%) significantly (p<0.05) reduced the wound diameter producing 90.9 and 93.7% wound contraction respectively on day 18 post wounding. It also reduced epithelialization time of excised wounds and increased the rate of wound closure, with WC 50 of 8.7%. The extract (400 mg kg −1) also significantly (p<0.05) increased the weight of granuloma tissue. In antiulcer studies, the extract significantly (p<0.05) inhibited the development of ulcers induced by indomethacin and moderately inhibited ethanol acid-induced ulcer. It was, however, devoid of any such effect in coldrestraint stress-induced lesions at the doses used. Phytochemical analysis of the extract revealed the presence of alkaloids, saponins, tannins, flavonoids, reducing sugar, carbohydrates and glycosides. Conclusion: These findings indicate that constituents of aerial parts of P. niruri possess wound healing and antiulcer properties.
The effects of the methanol extract of the stem bark of Prosopis africana (Guill., Perrott. and Rich.) Taubert (Fabaceae) on bleeding/clotting and coagulation time, excision and dead space wounds were studied in rats. Also, the extract was subjected to antibacterial, and acute toxicity and lethality (LD50) tests. The extract significantly (P<0.05) reduced bleeding/clotting and coagulation time in rats. It also reduced epithelialization period of excision wounds in rats and inhibited the growth of laboratory strains of Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, Pseudomonas aeruginosa and Klebsiella pneumoniae to varying extents. Acute toxicity and lethality (LD50) test on the extract established an LD50 of 774 mg/kg (i.p) in mice while phytochemical analysis gave positive reactions for alkaloids, saponins, tannins, flavonoids, steroids, terpenoids and carbohydrates. The results of this study demonstrate the beneficial effects of the stem bark of P. africana in wound care.
Aim:The aim of this study was to evaluate the antimicrobial and antioxidant effects of Crinum jagus (J. Thomps.) Dandy methanolic bulb extract in wound healing.Materials and Methods:Phytochemical screening revealed the presence of alkaloids, glycosides, tannins, and saponins in the extract. In vitro antimicrobial activity of the extract was determined by agar well diffusion method. In vivo antimicrobial activity of the extract was determined by microbial assay of excision wound in rats contaminated with Staphylococcus aureus, Bacillus subtilis, Pseudomonas areuginosa, and Candida albicans and treated with 300 mg/kg body weight (bw) of 10 and 5% methanolic C. jagus bulb extract ointment (MCJBEO), respectively. Enzymatic antioxidant effect of the extract was determined in vivo by assaying superoxide dismutase (SOD) and catalase (CAT) activity, and malondialdehyde (MDA) level in excision wound biopsies of rats treated with 10 and 5% MCJBEO, respectively, following standard methods. Non-enzymatic antioxidant effect of the extract was determined in vitro using diphenylpicrylhydrazyl (DPPH) method following standard procedure.Results:The extract exhibited in vitro antimicrobial effect in a concentration-dependent manner with one hundred (100) mg/ml concentration of the extract having the highest inhibitory zone diameter for B. subtilis (25 mm), S. aureus (21 mm), and C. albicans (14 mm) followed by the 50, 25 and 12.5 mg/ml concentrations, respectively. B. subtilis, S. aureus, and C. albicans were not isolated from wounds of animals treated with both extract concentrations 10% and 5% MCJBEO, and reference drug (framycetin sulfate/clotrimazole). Activities of the enzymatic antioxidants SOD and CAT in wound biopsies treated with 10% MCJBEO were significantly (P < 0.05) higher when compared with those treated with 5% MCJBEO. Significantly (P < 0.05) decreased MDA level of wound biopsies from extract-treated rats was observed. The extract exhibited non-enzymatic antioxidant (DPPH) effect in a concentration-dependent manner.Conclusion:This study has shown that an anti-microbial and antioxidant effects could possibly be part of mechanism by which C. jagus bulb extract promote wound healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.