This paper proposes a sliding-mode-based direct power control (DPC) method in a three-phase boost rectifier without the use of a voltage sensor. This sliding-mode-based DPC is used to improve transient-state response characteristics. This DPC can eliminate voltage sensors by calculating a voltage using a sensorless method, thus considerably reducing cost. This DPC first presents an effective algorithm that does not significantly affect the previous performance and does not need a voltage sensor. Thereafter, the effectiveness of the algorithm is verified by simulations and experiments.
-In this paper, a battery charger is introduced for an interleaved DC-DC converter with an LCLC filter. To improve the overall performance of the DC-DC converter for battery charger, a method is proposed. First, the structure of the system is presented. Second, an LC filter is compared to an LCLC filter in terms of the response characteristics and size. Third, the small-signal model of a bidirectional DC-DC converter using a state-space averaging method and the required transfer functions are introduced. Next, the frequency characteristics of the converter are discussed. Finally, the simulation and experimental results are analyzed to verify the proposed state space of the bidirectional converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.