Although brown macroalgae holds potential as an alternative feedstock, its utilization by conventional microbial platforms has been limited due to the inability to metabolize one of the principal sugars, alginate. Here, we isolate Vibrio sp. dhg, a fast-growing bacterium that can efficiently assimilate alginate. Based on systematic characterization of the genomic information of Vibrio sp. dhg, we establish a genetic toolbox for its engineering. We also demonstrate its ability to rapidly produce ethanol, 2,3-butanediol, and lycopene from brown macroalgae sugar mixture with high productivities and yields. Collectively, Vibrio sp. dhg can be used as a platform for the efficient conversion of brown macroalgae sugars into diverse value-added biochemicals.
Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. Considering that the MEP pathway is closely related to the cell membrane and electron transport chain, the activities of the two enzymes of Vibrio sp. dhg were expected to be higher than the enzymes of Escherichia coli. We found that Dxs and IspA in Vibrio sp. dhg exhibited 1.08-fold and 1.38-fold higher catalytic efficiencies, respectively. Consequently, the heterologous overexpression improved the specific lycopene production by 1.88-fold. Our findings could be widely utilized to enhance production of lycopene and other carotenoids.
Background Owing to increasing concerns about climate change and the depletion of fossil fuels, the development of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essential to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, xylose, and arabinose) faster than any previously reported microorganisms. Results The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution significantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate (0.67 h−1 and 2.15 g gdry cell weight−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrating efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L). Conclusions In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolutionary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse biochemicals from lignocellulosic biomass.
Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-D-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. Considering that the MEP pathway is closely related to the cell membrane and electron transport chain, the activities of the two enzymes of Vibrio sp. dhg were expected to be higher than the enzymes of E. coli. We found that Dxs and IspA in Vibrio sp. dhg exhibited 1.08-fold and 1.38-fold higher catalytic efficiencies, respectively. Consequently, the heterologous overexpression improved the specific lycopene production by 1.88-fold. Our findings could be widely utilized to enhance production of lycopene and other carotenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.