Several outbreaks of gout were reported in commercial broilers in India during 2011 and 2012, causing up to 40% mortality in the birds. Gross and histopathological observations confirmed gout. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis from kidney samples of gout-affected birds indicated the presence of chicken astrovirus (CAstV) in 41.7% of cases and a mixed infection of CAstV and avian nephritis virus (ANV) in 36.4% of cases. CAstV isolated from gout-affected kidneys by inoculating embryonated specific pathogen free (SPF) eggs showed dwarfing in embryos and a cytopathic effect in chicken embryo kidney cells. Inoculation of 1-day-old SPF and broiler chicks with CAstVs caused gout and mortality between 4 and 10 days post inoculation. Virus isolation and qRT-PCR analysis showed the presence of only CAstV in inoculated chicks. Sequence analysis of capsid genes indicated a major group of Indian CAstVs that displayed 92.0 to 99.2% intergroup amino acid identity and 83.9 to 90.4% identity with subgroup Bi CAstVs of UK origin. We designated this group Indian Bi. Analysis of the partial polymerase amino acid sequences of our isolates indicated two groups of CAstVs (Indian 1 and 2) that displayed 90.2 to 95.5% amino acid identity between them. We thus report for the first time that, in addition to infectious bronchitis virus and ANV, CAstVs are a causative agent of gout.
Poultry parvoviruses identified during the early 1980s are found worldwide in intestines from young birds with enteric disease syndromes as well as healthy birds. The chicken parvovirus (ChPV) and turkey parvovirus (TuPV) belong to the Aveparvovirus genus within the subfamily Parvovirinae. Poultry parvoviruses are small, non-enveloped, single-stranded DNA viruses consisting of three open reading frames, the first two encoding the non-structural protein (NS) and nuclear phosphoprotein (NP) and the third encoding the viral capsid proteins 1 (VP1 and VP2). In contrast to other parvoviruses, the VP1-unique region does not contain the phospholipase A2 sequence motif. Recent experimental studies suggested the parvoviruses to be the candidate pathogens in cases of enteric disease syndrome. Current diagnostic methods for poultry parvovirus detection include PCR, real-time PCR, enzyme linked immunosorbent assay using recombinant VP2 or VP1 capsid proteins. Moreover, sequenceindependent amplification techniques combined with next-generation sequencing platforms have allowed rapid and simultaneous detection of the parvovirus from affected and healthy birds. There is no commercial vaccine; hence, the development of an effective vaccine to control the spread of infection should be of primary importance. This review presents the current knowledge on poultry parvoviruses with emphasis on taxonomy, phylogenetic relationship, genomic analysis, epidemiology, pathogenesis and diagnostic methods. ARTICLE HISTORY
Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic losses to the poultry industry in most parts of the world. The susceptibility of a wide variety of avian species coupled with synanthropic bird reservoirs has contributed to the vast genomic diversity of this virus as well as diagnostic failures. Since the first panzootic in 1926, Newcastle disease (ND) became enzootic in India with recurrent outbreaks in multiple avian species. The genetic characteristics of circulating strains in India, however, are largely unknown. To understand the nature of NDV genotypes in India, we characterized two representative strains isolated 13 years apart from a chicken and a pigeon by complete genome sequence analysis and pathotyping. The viruses were characterized as velogenic by pathogenicity indices devised to distinguish these strains. The genome length was 15,186 nucleotides (nt) and consisted of six non-overlapping genes, with conserved and complementary 3′ leader and 5′ trailer regions, conserved gene starts, gene stops, and intergenic sequences similar to those in avian paramyxovirus 1 (APMV-1) strains. Matrix gene sequence analysis grouped the pigeon isolate with APMV-1 strains. Phylogeny based on the fusion (F), and hemagglutinin (HN) genes and complete genome sequence grouped these viruses into genotype IV. Genotype IV strains are considered to have “died out” after the first panzootic (1926–1960) of ND. But, our results suggest that there is persistence of genotype IV strains in India.
Summary. -Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses.
Avian pox diseases are contagious and slow spreading viral infections in birds. The present study was aim to, isolate and molecular characterization of turkeypox virus from a clinical case. Ten out of the twelve scab lesions sample collected from clinically suspected cases were positive for avian pox viurs (APV) based on virus isolation and polymerase chain reaction. We conducted genetic characterization of the APV strain. The phylogenetic analyses of P4b gene APV genome indicated that, avian poxviruses fragments sequenced in this study clustered along the A clade of avipoxviruses, genetically related to Indian fowl pox virus isolated from chicken, showing 99% homology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.