Oxidative stress has been reported to induce cognitive impairment in Parkinson's disease. This paper aimed to determine the effect of quercetin, a substance possessing antioxidant activity, on the cognitive function in a rat model of Parkinson's disease. Male Wistar rats, weighing 200–250 g, were orally given quercetin at doses of 100, 200, 300 mg/kg BW once daily for a period of 14 days before and 14 days after the unilateral lesion of right substantia nigra induced by 6-hydroxydopamine (6-OHDA). Their spatial memory was assessed at 7 and 14 days of treatment and neuron density was determined, malondialdehyde (MDA) level, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were evaluated at the end of the experiment. In addition, the activity of acetylcholinesterase (AChE) was also measured. It was found that all doses of quercetin enhanced spatial memory. Therefore, it is suggested that the cognitive-enhancing effect of quercetin occurs partly because of decreased oxidative damage resulting in increased neuron density.
To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180–220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s) are still required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.