Purpose:To determine the levels of dopamine in tear fluid and demonstrate the use of tear fluid as a non-invasive source for dopamine measurements in humans.Methods:The study cohort included 30 clinically healthy individuals without any pre-existing ocular or systemic conditions. Matched tear fluid (using Schirmer's strips and capillary tubes) and plasma were collected from the subjects. Dopamine levels were evaluated using direct competitive chemiluminescent enzyme-linked immunosorbent assay (ELISA), dopamine kit (Cloud Clone Corp, TX, USA).Results:Significantly higher dopamine levels were found in the tear fluid compared to plasma in the study subjects. The level of dopamine was 97.2 ± 11.80 pg/ml (mean ± SEM), 279 ± 14.8 pg/ml (mean ± SEM), and 470.4 ± 37.64 pg/ml (mean ± SEM) in the plasma and in the tears collected using Schirmer's strips and capillary tubes, respectively.Conclusion:Dopamine was detectable in all the tear fluid samples tested and was also found to be at a higher concentration than in plasma samples. Tear fluid can be used as a non-invasive sample source to monitor dopamine levels.
Eurotium rubrum is a halophilic marine ascomycete, which can bear the hypersalinities of the Red Sea and proliferate, while most living entities cannot bear this condition. Recently, a 26.2 Mb assembled genome of this fungus had become available. Marine fungi are fascinating organisms capable of harboring several biosynthetic gene clusters (BGCs), which enables them to produce several natural compounds with antibiotic and anticancerous properties. Understanding the BGCs are critically important for the development of biotechnological applications and the discovery of future drugs. There is no knowledge available on the BGCs of this halophilic marine ascomycete. Herein, we set out to explore and characterize BGCs and the corresponding genes from E. rubrum using bioinformatic methods. We deciphered 36 BGCs in the genome of E. rubrum. These 36 BGCs can be grouped into four non-ribosomal peptide synthetase (NRPS) clusters, eight NRPS-like (NRPSL) BGCs, eight type I polyketide synthase (T1PKS), 11 terpene BGCs including one β-lactone cluster, four hybrid BGCs, and two siderophore BGCs. This study is an example of marine genomics application into potential future drug-like compound discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.