Convolutional neural networks (CNNs) for biomedical image analysis are often of very large size, resulting in high memory requirement and high latency of operations. Searching for an acceptable compressed representation of the base CNN for a specific imaging application typically involves a series of time-consuming training/validation experiments to achieve a good compromise between network size and accuracy. To address this challenge, we propose CC-Net, a new image complexity-guided CNN compression scheme for biomedical image segmentation. Given a CNN model, CC-Net predicts the final accuracy of networks of different sizes based on the average image complexity computed from the training data. It then selects a multiplicative factor for producing a desired network with acceptable network accuracy and size. Experiments show that CC-Net is effective for generating compressed segmentation networks, retaining up to ≈ 95% of the base network segmentation accuracy and utilizing only ≈ 0.1% of trainable parameters of the full-sized networks in the best case.
Background: Today's machine-learning based dermatologic research has largely focused on pigmented/non-pigmented lesions concerning skin cancers. However, studies on machine-learning-aided diagnosis of depigmented non-melanocytic lesions, which are more difficult to diagnose by unaided eye, are very few.Objective: We aim to assess the performance of deep learning methods for diagnosing vitiligo by deploying Convolutional Neural Networks (CNNs) and comparing their diagnosis accuracy with that of human raters with different levels of experience.Methods: A Chinese in-house dataset (2,876 images) and a world-wide public dataset (1,341 images) containing vitiligo and other depigmented/hypopigmented lesions were constructed. Three CNN models were trained on close-up images in both datasets. The results by the CNNs were compared with those by 14 human raters from four groups: expert raters (>10 years of experience), intermediate raters (5–10 years), dermatology residents, and general practitioners. F1 score, the area under the receiver operating characteristic curve (AUC), specificity, and sensitivity metrics were used to compare the performance of the CNNs with that of the raters.Results: For the in-house dataset, CNNs achieved a comparable F1 score (mean [standard deviation]) with expert raters (0.8864 [0.005] vs. 0.8933 [0.044]) and outperformed intermediate raters (0.7603 [0.029]), dermatology residents (0.6161 [0.068]) and general practitioners (0.4964 [0.139]). For the public dataset, CNNs achieved a higher F1 score (0.9684 [0.005]) compared to the diagnosis of expert raters (0.9221 [0.031]).Conclusion: Properly designed and trained CNNs are able to diagnose vitiligo without the aid of Wood's lamp images and outperform human raters in an experimental setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.