It has been shown earlier that three-dimensional (3-D) electrode architecture facilitates higher energy and power density than the planar thin film based electrodes. In the present study, we fabricated SU-8 photoresist derived micro-patterned three-dimensional carbon-based electrodes using photolithography on stainless steel (SS) wafer used as a current collector. The preference of SS wafer over conventionally used silicon (Si) wafer is based on our previous study where use of SS wafer as a current collector enhanced the reversible capacity of thin carbon films to almost double as compared to the thin films prepared on Si wafer. Asfabricated 3-D carbon electrodes were then investigated for their electrochemical performance. At 0.1 Crate , Li-ion reversible capacity was found to be nearly 600 mAh/g after 165 continuous charge/discharge cycles. Nearly 100% coulombic efficiency and excellent cyclic stability confirms the potential use of such 3-D micro-patterned carbon electrodes for next generation Li-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.