This letter proposes a high-speed and reconfigurable Discrete Hilbert Transform architecture design methodology targeting the real-time applications including Cyber-Physical systems, Internet of Things or Remote Health-Monitoring where the same chip-set needs to be used for various purposes under real-time scenario. By using this architecture we are able to get Discrete Hilbert Transform for any given M-point by re-using N-point Discrete Hilbert Transform as a kernel. Here N and M are multiple of 4 and N respectively. Subsequently we provide the architecture design details and compare the proposed architecture with the conventional state-of-the-art architecture. Thorough theoretical analysis and experimental comparison results show that the proposed design is twice as fast and reconfigurability is also achieved simultaneously.Index Terms-Discrete Hilbert Transform, high-speed architecture, reconfigurable architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.