Substance P (SP), a putative nociceptive transmitter, is increased in the CSF of patients with fibromyalgia syndrome (FMS). Because excitatory amino acids (EAAs) also appear to transmit pain, we hypothesized that CSF EAAs may be similarly involved in this syndrome. We found that the mean concentrations of most amino acids in the CSF did not differ amongst groups of subjects with primary FMS (PFMS), fibromyalgia associated with other conditions (SFMS), other painful conditions not exhibiting fibromyalgia (OTHER) or age-matched, healthy normal controls (HNC). However, in SFMS patients, individual measures of pain intensity, determined using an examination-based measure of pain intensity, the tender point index (TPI), covaried with their respective concentrations of glutamine and asparagine, metabolites of glutamate and aspartate, respectively. This suggests that re-uptake and biotransformation mask pain-related increases in EAAs. Individual concentrations of glycine and taurine also correlated with their respective TPI values in patients with PFMS. While taurine is affected by a variety of excitatory manipulations, glycine is an inhibitory transmitter as well as a positive modulator of the N-methyl-D-asparate (NMDA) receptor. In both PFMS and SFMS patients, TPI covaried with arginine, the precursor to nitric oxide (NO), whose concentrations, in turn, correlated with those of citrulline, a byproduct of NO synthesis. These events predict involvement of NO, a potent signaling molecule thought to be involved in pain processing. Together these metabolic changes that covary with the intensity of pain in patients with FMS may reflect increased EAA release and a positive modulation of NMDA receptors by glycine, perhaps resulting in enhanced synthesis of NO.
Nociceptive primary afferent C-fibers express a subset of glutamate receptors that are sensitive to kainic acid. Thus, we tested the possibility that activation of these receptors alters nociception. Intraperitoneal (i.p.) injection of kainic acid induced a persistent thermal hyperalgesia, when tested using the hot plate (mice) and tail flick (mice and rats) assays, and mechanical hyperalgesia when tested using von Frey monofilaments (rats), but had no effect on acetic acid-induced chemical nociception (mice). When administered i. p., 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid HBr/kainate (AMPA/KA) antagonist, completely blocked hyperalgesia. When injected intrathecally (i.t.), kainic acid itself failed to induce hyperalgesia and AMPA/KA antagonists given i.t. also failed to attenuate the hyperalgesic effect of kainic acid administered i.p. , indicating that the spinal cord is not the primary site of action. Kainic acid injected subcutaneously in the back of mice decreased response latencies in the hot plate and tail flick assays, indicating that hyperalgesia is achieved by a variety of parenteral routes of injection. Histological evaluation of rat spinal cord and dorsal root ganglia revealed no neurodegenerative changes 24 h after kainic acid. Together these data suggest that a persistent hyperalgesia results from the transient activation of AMPA/KA receptors that are located outside the spinal cord, perhaps on the distal projections of primary afferent fibers.
Kainic acid produces a persistent hyperalgesia when injected intraperitoneally (i.p.) in the rat or mouse. At higher doses than those needed to influence nociception, kainic acid induces seizures and translocation of histologically reactive zinc in the hippocampus. We tested the hypothesis that zinc, localized in a population of small diameter primary afferent neurons, plays a role in kainic acid-induced hyperalgesia similar to that in the hippocampus where zinc translocation accompanies kainic acid-induced seizures. The importance of zinc in the extracellular area was assessed by the influence of compounds that chelate divalent cations (disodium calcium ethylene diaminetetraacetate (CaEDTA)) or zinc (dipicolinic acid (DPA)) on kainic acid-induced hyperalgesia. When measured using the tail flick assay, thermal hyperalgesia was blocked by pretreatment intrathecally (i.t.) with either 10 nmol of NaCaEDTA or 1 nmol of DPA, drugs whose distribution is limited to the extracellular area. Injection of 10 ng zinc chloride i.t. had no long-term effect on nociception or on kainic acid-induced hyperalgesia. Whether zinc is translocated in response to a hyperalgesic dose of kainic acid was determined using the zinc-selective dye, N-(6-methoxy-8-quinolyl)-para-toluenensulfonamide (TSQ), which produces a delicate stain in the neuropil of the mouse spinal cord as well as a dense stain in the hippocampus. Injection of a hyperalgesic dose of kainic acid failed to alter TSQ fluorescence in either the spinal cord or hippocampus, in contrast to the distinct bleaching of TSQ in the hippocampus 24 h after a convulsant dose of kainic acid. Together these data suggest that, while not translocated, zinc in the extracellular area is necessary but not sufficient for the development of kainic acid-induced hyperalgesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.