Deregulation of the PI3K signaling pathway is observed in many human cancers and occurs most frequently through loss of PTEN phosphatase tumor suppressor function or through somatic activating mutations in the Class IA PI3K, PIK3CA. Tumors harboring activated p110␣, the protein product of PIK3CA, require p110␣ activity for growth and survival and hence are expected to be responsive to inhibitors of its lipid kinase activity. Whether PTEN-deficient cancers similarly depend on p110␣ activity to sustain activation of the PI3K pathway has been unclear. In this study, we used a single-vector lentiviral inducible shRNA system to selectively inactivate the three Class IA PI3Ks, PIK3CA, PIK3CB, and PIK3CD, to determine which PI3K isoforms are responsible for driving the abnormal proliferation of PTEN-deficient cancers. Down-regulation of PIK3CA in colorectal cancer cells harboring mutations in PIK3CA inhibited downstream PI3K signaling and cell growth. Surprisingly, PIK3CA depletion affected neither PI3K signaling nor cell growth in 3 PTEN-deficient cancer cell lines. In contrast, down-regulation of the PIK3CB isoform, which encodes p110, resulted in pathway inactivation and subsequent inhibition of growth in both cell-based and in vivo settings. This essential function of PIK3CB in PTEN-deficient cancer cells required its lipid kinase activity. Our findings demonstrate that although p110␣ activation is required to sustain the proliferation of established PIK3CA-mutant tumors, PTEN-deficient tumors are dependent instead on p110 signaling. This unexpected finding demonstrates the need to tailor therapeutic approaches to the genetic basis of PI3K pathway activation to achieve optimal treatment response.
The RAS pathway is one of the most frequently deregulated pathways in cancer. RAS signals through multiple effector pathways, including the RAF/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK MAPK and phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascades. The oncogenic potential of these effector pathways is illustrated by the frequent occurrence of activating mutations in BRAF and PIK3CA as well as loss-of-function mutations in the tumor suppressor PTEN, a negative regulator of PI3K. Previous studies have found that whereas BRAF mutant cancers are highly sensitive to MEK inhibition, RAS mutant cancers exhibit a more variable response. The molecular mechanisms responsible for this heterogeneous response remain unclear. In this study, we show that PI3K pathway activation strongly influences the sensitivity of RAS mutant cells to MEK inhibitors. Activating mutations in PIK3CA reduce the sensitivity to MEK inhibition, whereas PTEN mutations seem to cause complete resistance. We further show that down-regulation of PIK3CA resensitizes cells with co-occurring KRAS and PIK3CA mutations to MEK inhibition. At the molecular level, the dual inhibition of both pathways seems to be required for complete inhibition of the downstream mammalian target of rapamycin effector pathway and results in the induction of cell death. Finally, we show that whereas inactivation of either the MEK or PI3K pathway leads to partial tumor growth inhibition, targeted inhibition of both pathways is required to achieve tumor stasis. Our study provides molecular insights that help explain the heterogeneous response of KRAS mutant cancers to MEK pathway inhibition and presents a strong rationale for the clinical testing of combination MEK and PI3K targeted therapies. [Cancer Res 2009;69(10):4286-93]
The use of RNA interference (RNAi) has enabled loss-offunction studies in mammalian cancer cells and has hence become critical for identifying and validating cancer drug targets. Current transient siRNA and stable shRNA systems, however, have limited utility in accurately assessing the cancer dependency due to their short-lived effects and limited in vivo utility, respectively. In this study, a single-vector lentiviral, Tet-inducible shRNA system (pLKO-Tet-On) was generated to allow for the rapid generation of multiple stable cell lines with regulatable shRNA expression. We demonstrate the advantages and versatility of this system by targeting two polycomb group proteins, Bmi-1 and Mel-18, in a number of cancer cell lines. Our data show that pLKO-Tet-Onmediated knockdown is tightly regulated by the inducer tetracycline and its derivative, doxycycline, in a concentration-and time-dependent manner. Furthermore, target gene expression is fully restored upon withdrawal of the inducing agent. An additional, 17 distinct gene products have been targeted by inducible shRNAs with robust regulation in all cases. Importantly, we functionally validate the ability of the pLKO-Tet-On vector to reversibly silence targeted transcripts in vivo. The versatile and robust inducible lentiviral RNAi system reported herein can therefore serve as a powerful tool to rapidly reveal tumor cell dependence.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.
Thirty-five years after the 'war on cancer' was declared, the discovery of anticancer drugs remains a highly challenging endeavour. Here, we consider the factors responsible, such as tumour heterogeneity, and suggest strategies to improve the chances of short-term success in the development of novel anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.