Background
Cadmium (Cd) and lead (Pb) are widespread environmental contaminants that are known nephrotoxins. However, their nephrotoxic effects at low-environmental exposure levels are debated.
Objective
We examined the association of blood Pb (B-Pb), blood Cd (B-Cd), urinary Pb (U-Pb) and urinary Cd (U-Cd) with estimated glomerular filtration rate (eGFR) and urinary albumin (ALB).
Methods
We used multivariate linear regression to analyze the association between B-Pb, B-Cd, U-Pb, and U-Cd with eGFR and ALB in adult participants (≥20 years of age) in NHANES 2007–2012. The dataset was limited to NHANES individuals with both blood and urinary metal measurements.
Results
We found a statistically significant inverse association between eGFR and B-Cd and statistically significant positive associations between eGFR and both U-Cd and U-Pb, as well as statistically significant associations between ALB and the 3rd and 4th quartiles of U-Cd.
Conclusions
The inverse association between eGFR and B-Cd, in conjunction with positive associations between eGFR and ALB with U-Cd, suggest that U-Cd measurement at low levels of exposure may result from changes in renal excretion of Cd due to kidney function and protein excretion. However, renal effects such as hyperfiltration from Cd-mediated kidney damage or creatinine-specific Cd effects cannot be excluded with this cross-sectional design.
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8–17 [rats], GD 12–14 and PND 3–10 [mice]) and motor function performance (insufficient data for rats, GD 12–17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review.
The authors reviewed human data related to motor development following exposure to a subset of chemicals thoroughly reviewed in Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles and Addenda. The resulting dataset includes the following variables and confounders: chemical name, exposure route, exposure duration and frequency, study design, cohort name and/or geographic location, sex of cohort subjects, NOAEL, and LOAEL. This data summary can help validate motor development outcomes observed in animal exposure studies; it can also aid in determining whether these outcomes and corresponding exposure windows are relevant to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.